scholarly journals Structural and Functional Insights into the Role of Guard Cell Ion Channels in Abiotic Stress-Induced Stomatal Closure

Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2774
Author(s):  
Hamdy Kashtoh ◽  
Kwang-Hyun Baek

A stomatal pore is formed by a pair of specialized guard cells and serves as a major gateway for water transpiration and atmospheric CO2 influx for photosynthesis in plants. These pores must be tightly controlled, as inadequate CO2 intake and excessive water loss are devastating for plants. When the plants are exposed to extreme weather conditions such as high CO2 levels, O3, low air humidity, and drought, the turgor pressure of the guard cells exhibits an appropriate response against these stresses, which leads to stomatal closure. This phenomenon involves a complex network of ion channels and their regulation. It is well-established that the turgor pressure of guard cells is regulated by ions transportation across the membrane, such as anions and potassium ions. In this review, the guard cell ion channels are discussed, highlighting the structure and functions of key ion channels; the SLAC1 anion channel and KAT1 potassium channel, and their regulatory components, emphasizing their significance in guard cell response to various stimuli.

1998 ◽  
Vol 353 (1374) ◽  
pp. 1475-1488 ◽  
Author(s):  
E. A. C. MacRobbie

Our understanding of the signalling mechanisms involved in the process of stomatal closure is reviewed. Work has concentrated on the mechanisms by which abscisic acid (ABA) induces changes in specific ion channels at both the plasmalemma and the tonoplast leading to efflux of both K + and anions at both membranes, requiring four essential changes. For each we need to identify the specific channels concerned, and the detailed signalling chains by which each is linked through signalling intermediates to ABA. There are two global changes that are identified following ABA treatment, an increase in cytoplasmic pH and an increase in cytoplasmic Ca 2+ , although stomata can close without any measurable global increase in cytoplasmic Ca 2+ . There is also evidence for the importance of several protein phosphatases and protein kinases in the regulation of channel activity. At the plasmalemma, loss of K + requires depolarization of the membrane potential into the range at which the outward K + channel is open. ABA–induced activation of a non–specific cation channel, permeable to Ca 2+ , may contribute to the necessary depolarization, together with ABA–induced activation of S–type anion channels in the plasmalemma, which are then responsible for the necessary anion efflux. The anion channels are activated by Ca 2+ and by phosphorylation, but the precise mechanism of their activation by ABA is not yet clear. ABA also up–regulates the outward K + current at any given membrane potential; this activation is Ca 2+ –independent and is attributed to the increase in cytoplasmic pH, perhaps through the marked pH–sensitivity of protein phosphatase type 2C. Our understanding of mechanisms at the tonoplast is much less complete. A total of two channels, both Ca 2+ –activated, have been identified which are capable of K + efflux; these are the voltage–independent VK channel specific to K + , and the slow vacuolar (SV) channel which opens only at non–physiological tonoplast potentials (cytoplasm positive). The SV channel is permeable to K + and Ca 2+ , and although it has been argued that it could be responsible for Ca 2+ –induced Ca 2+ release, it now seems likely that it opens only under conditions where Ca 2+ will flow from cytoplasm to vacuole. Although tracer measurements show unequivocally that ABA does activate efflux of Cl – from vacuole to cytoplasm, no vacuolar anion channel has yet been identified. There is clear evidence that ABA activates release of Ca 2+ from internal stores, but the source and trigger for ABA–induced increase in cytoplasmic Ca 2+ are uncertain. The tonoplast and another membrane, probably ER, have IP 3 –sensitive Ca 2+ release channels, and the tonoplast has also cADPR–activated Ca 2+ channels. Their relative contributions to ABA–induced release of Ca 2+ from internal stores remain to be established. There is some evidence for activation of phospholipase C by ABA, by an unknown mechanism; plant phospholipase C may be activated by Ca 2+ rather than by the G–proteins used in many animal cell signalling systems. A further ABA–induced channel modulation is the inhibition of the inward K + channel, which is not essential for closing but will prevent opening. It is suggested that this is mediated through the Ca 2+ –activated protein phosphatase, calcineurin. The question of Ca 2+ –independent stomatal closure remains controversial. At the plasmalemma the stimulation of K + efflux is Ca 2+ –independent and, at least in Arabidopsis , activation of anion efflux by ABA may also be Ca 2+ –independent. But there are no indications of Ca 2+ –independent mechanisms for K + efflux at the tonoplast, and the appropriate anion channel at the tonoplast is still to be found. There is also evidence that ABA interferes with a control system in the guard cell, resetting its set–point to lower contents, suggesting that stretch–activated channels also feature in the regulation of guard cell ion channels, perhaps through interactions with cytoskeletal proteins. There is evidence for involvement of actin in the control of guard cell ion channels, although possible mechanisms are still to be identified. Stomatal closure involves net loss of vacuolar sugars as well as potassium salts, and there is an urgent need to address the question of the nature of the signalling chains linking transport and metabolism of sugars to the closing signal.


2021 ◽  
Vol 7 (28) ◽  
pp. eabg4619
Author(s):  
Shouguang Huang ◽  
Meiqi Ding ◽  
M. Rob G. Roelfsema ◽  
Ingo Dreyer ◽  
Sönke Scherzer ◽  
...  

Guard cells control the aperture of plant stomata, which are crucial for global fluxes of CO2 and water. In turn, guard cell anion channels are seen as key players for stomatal closure, but is activation of these channels sufficient to limit plant water loss? To answer this open question, we used an optogenetic approach based on the light-gated anion channelrhodopsin 1 (GtACR1). In tobacco guard cells that express GtACR1, blue- and green-light pulses elicit Cl− and NO3− currents of −1 to −2 nA. The anion currents depolarize the plasma membrane by 60 to 80 mV, which causes opening of voltage-gated K+ channels and the extrusion of K+. As a result, continuous stimulation with green light leads to loss of guard cell turgor and closure of stomata at conditions that provoke stomatal opening in wild type. GtACR1 optogenetics thus provides unequivocal evidence that opening of anion channels is sufficient to close stomata.


2020 ◽  
Vol 117 (34) ◽  
pp. 20932-20942 ◽  
Author(s):  
Wenxiu Ye ◽  
Shintaro Munemasa ◽  
Tomonori Shinya ◽  
Wei Wu ◽  
Tao Ma ◽  
...  

Many pathogenic fungi exploit stomata as invasion routes, causing destructive diseases of major cereal crops. Intensive interaction is expected to occur between guard cells and fungi. In the present study, we took advantage of well-conserved molecules derived from the fungal cell wall, chitin oligosaccharide (CTOS), and chitosan oligosaccharide (CSOS) to study how guard cells respond to fungal invasion. InArabidopsis, CTOS induced stomatal closure through a signaling mediated by its receptor CERK1, Ca2+, and a major S-type anion channel, SLAC1. CSOS, which is converted from CTOS by chitin deacetylases from invading fungi, did not induce stomatal closure, suggesting that this conversion is a fungal strategy to evade stomatal closure. At higher concentrations, CSOS but not CTOS induced guard cell death in a manner dependent on Ca2+but not CERK1. These results suggest that stomatal immunity against fungal invasion comprises not only CTOS-induced stomatal closure but also CSOS-induced guard cell death.


2019 ◽  
Author(s):  
Maria Kalliola ◽  
Liina Jakobson ◽  
Pär Davidsson ◽  
Ville Pennanen ◽  
Cezary Waszczak ◽  
...  

AbstractStrigolactones are a group of phytohormones that control shoot branching inArabidopsis thaliana. However, in recent years they have been shown to affect many other plant processes. We previously showed that the strigolactone perception mutantmore axillary branches 2 (max2)has increased susceptibility to plant pathogenic bacteria as a result of more open stomata as well as alterations in hormonal signalling. Here we show that both, strigolactone biosynthesis- (max3andmax4), and perception mutants (max2anddwarf14) are significantly more sensitive toPseudomonas syringaeDC3000. Moreover, in response toP. syringaeinfection, high levels of SA accumulated inmax2and this mutant was ozone sensitive. To search for the mechanisms that could explain pathogen- and ozone sensitivity we performed gene expression analysis and several different assays that explore the function of guard cells and regulation of guard cell signalling.Treatments with GR24 (a strigolactone analogue) resulted in very modest changes in defence-related gene expression. In contrast, guard cell function was clearly impaired inmax2and depending on the assay used, also inmax3, max4andd14mutants. Moreover, stomatal responses to stimuli that cause stomatal closure in wild-type plants (darkness, high CO2and ABA) were analysed in the strigolactone mutants. In darkness both strigolactone biosynthesis and perception mutants showed reduced stomatal closure, whereas the response to high CO2was impaired only inmax2andd14. The response to ABA was not impaired in any of the mutants. To position the role of MAX2 in the guard cell signalling network,max2was crossed with mutants defective in ABA biosynthesis (aba2), in guard cell ABA signalling (ost1) and a scaffold protein required for proper ion channel activity (ghr1). The stomatal conductance of double mutants was consistently higher than the corresponding single mutants, suggesting that MAX2 acts in a signalling pathway that functions in parallel to the well characterized guard cell ABA signalling pathway. We propose that the impaired defence responses ofmax2is related to more open stomata that allows increased entry of bacteria or air pollutants like ozone. Furthermore, as MAX2 appears to act in a specific branch of guard cell signalling (related to CO2signalling), this protein could be one of the elusive components that allow guard cells to distinguish between different environmental conditions.


Author(s):  
Md Tahjib-Ul-Arif ◽  
Shintaro Munemasa ◽  
Toshiyuki Nakamura ◽  
Yoshimasa Nakamura ◽  
Yoshiyuki Murata

Abstract Cytosolic calcium ([Ca2+]cyt) elevation activates plasma membrane anion channels in guard cells, which is required for stomatal closure. However, involvement of the anion channels in the [Ca2+]cyt elevation remains unclear. We investigated the involvement using Arabidopsis thaliana anion channel mutants, slac1-4 slah3-3 and slac1-4 almt12-1. Extracellular calcium induced stomatal closure in the wild-type plants but not in the anion channel mutant plants whereas extracellular calcium induced [Ca2+]cyt elevation both in the wild-type guard cells and in the mutant guard cells. The peak height and the number of the [Ca2+]cyt spike were lower and larger in the slac1-4 slah3-3 than in the wild-type and the height and the number in the slac1-4 almt12-1 were much lower and much larger than in the wild-type. These results suggest that the anion channels are involved in the regulation of [Ca2+]cyt elevation in guard cells.


2011 ◽  
Vol 4 (173) ◽  
pp. ra32-ra32 ◽  
Author(s):  
D. Geiger ◽  
T. Maierhofer ◽  
K. A. S. AL-Rasheid ◽  
S. Scherzer ◽  
P. Mumm ◽  
...  

2020 ◽  
Vol 11 ◽  
Author(s):  
Zong-Qi Wang ◽  
Qi Liu ◽  
Ju-Hua Wu ◽  
Juan Li ◽  
Jun-Min He ◽  
...  

Stomata are a key land plant innovation that permit the regulation of gaseous exchanges between the plant interior and the surrounding environment. By opening or closing, stomata regulate transpiration of water though the plant; and these actions are coordinated with acquisition of CO2 for photosynthesis. Stomatal movement is controlled by various environmental and physiological factors and associates with multiple intracellular activities, among which the dynamic remodeling of vacuoles plays a crucial role. Phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2] is critical for dynamic remodeling of vacuoles. Its production requires a PI(3,5)P2-metabolizing complex consisting of FAB1/PIKfyve kinases, SAC phosphatases, and the scaffolding protein VAC14. Although genetic or pharmacological downregulation of PI(3,5)P2 causes hyposensitivity to ABA-induced stomatal closure, whether the effect of PI(3,5)P2 on stomatal movement is cell-autonomous and the physiological consequences of its reduction were unclear. We report that downregulating Arabidopsis VAC14 specifically in guard cells by artificial microRNAs (amiR-VAC14) results in enlarged guard cells and hyposensitivity to ABA- and dark-induced stomatal closure. Vacuolar fission during stomatal closure is compromised by downregulating VAC14 in guard cells. Exogenous application of PI(3,5)P2 rescued the amiR-VAC14 phenotype whereas PI(3,5)P2 inhibitor YM201636 caused wild-type plants to have inhibited stomatal closure. We further show that downregulating VAC14 specifically in guard cells impairs drought tolerance, suggestive of a key role of guard cell-produced PI(3,5)P2 in plant fitness.


2021 ◽  
Author(s):  
Li Qin ◽  
Ling-hui Tang ◽  
Jia-shu Xu ◽  
Xian-hui Zhang ◽  
Yun Zhu ◽  
...  

SUMMARYThe rapid (R)-type anion channel plays a central role in controlling stomatal closure in plant guard cells, thus regulating the exchange of water and photosynthetic gas (CO2) in response to environmental stimuli. The activity of the R- type anion channel is regulated by malate. However, the molecular basis of the R-type anion channel activity remains elusive. Here, we describe the first cryo-EM structure of the R-type anion channel QUAC1 at 3.5 Å resolution in the presence of malate. The structure reveals that the QUAC1 is a symmetrical dimer, forming a single electropositive T-shaped pore for passing anions across the membrane. The transmembrane and cytoplasmic domains are assembled into a twisted bi-layer architecture, with the associated dimeric interfaces nearly perpendicular. Our structural and functional analyses reveal that QUAC1 functions as an inward rectifying anion channel and suggests a mechanism for malate-mediated channel activation. Altogether, our study uncovers the molecular basis for a novel class of anion channels and provides insights into the gating and modulation of the R-type anion channel.


Sign in / Sign up

Export Citation Format

Share Document