scholarly journals Development of a Low-Cost System for 3D Orchard Mapping Integrating UGV and LiDAR

Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2804
Author(s):  
Harold F. Murcia ◽  
Sebastian Tilaguy ◽  
Sofiane Ouazaa

Growing evaluation in the early stages of crop development can be critical to eventual yield. Point clouds have been used for this purpose in tasks such as detection, characterization, phenotyping, and prediction on different crops with terrestrial mapping platforms based on laser scanning. 3D model generation requires the use of specialized measurement equipment, which limits access to this technology because of their complex and high cost, both hardware elements and data processing software. An unmanned 3D reconstruction mapping system of orchards or small crops has been developed to support the determination of morphological indices, allowing the individual calculation of the height and radius of the canopy of the trees to monitor plant growth. This paper presents the details on each development stage of a low-cost mapping system which integrates an Unmanned Ground Vehicle UGV and a 2D LiDAR to generate 3D point clouds. The sensing system for the data collection was developed from the design in mechanical, electronic, control, and software layers. The validation test was carried out on a citrus crop section by a comparison of distance and canopy height values obtained from our generated point cloud concerning the reference values obtained with a photogrammetry method. A 3D crop map was generated to provide a graphical view of the density of tree canopies in different sections which led to the determination of individual plant characteristics using a Python-assisted tool. Field evaluation results showed plant individual tree height and crown diameter with a root mean square error of around 30.8 and 45.7 cm between point cloud data and reference values.

Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4569
Author(s):  
Joan R. Rosell-Polo ◽  
Eduard Gregorio ◽  
Jordi Llorens

In this editorial, we provide an overview of the content of the special issue on “Terrestrial Laser Scanning”. The aim of this Special Issue is to bring together innovative developments and applications of terrestrial laser scanning (TLS), understood in a broad sense. Thus, although most contributions mainly involve the use of laser-based systems, other alternative technologies that also allow for obtaining 3D point clouds for the measurement and the 3D characterization of terrestrial targets, such as photogrammetry, are also considered. The 15 published contributions are mainly focused on the applications of TLS to the following three topics: TLS performance and point cloud processing, applications to civil engineering, and applications to plant characterization.


2020 ◽  
Author(s):  
Moritz Bruggisser ◽  
Johannes Otepka ◽  
Norbert Pfeifer ◽  
Markus Hollaus

<p>Unmanned aerial vehicles-borne laser scanning (ULS) allows time-efficient acquisition of high-resolution point clouds on regional extents at moderate costs. The quality of ULS-point clouds facilitates the 3D modelling of individual tree stems, what opens new possibilities in the context of forest monitoring and management. In our study, we developed and tested an algorithm which allows for i) the autonomous detection of potential stem locations within the point clouds, ii) the estimation of the diameter at breast height (DBH) and iii) the reconstruction of the tree stem. In our experiments on point clouds from both, a RIEGL miniVUX-1DL and a VUX-1UAV, respectively, we could detect 91.0 % and 77.6 % of the stems within our study area automatically. The DBH could be modelled with biases of 3.1 cm and 1.1 cm, respectively, from the two point cloud sets with respective detection rates of 80.6 % and 61.2 % of the trees present in the field inventory. The lowest 12 m of the tree stem could be reconstructed with absolute stem diameter differences below 5 cm and 2 cm, respectively, compared to stem diameters from a point cloud from terrestrial laser scanning. The accuracy of larger tree stems thereby was higher in general than the accuracy for smaller trees. Furthermore, we recognized a small influence only of the completeness with which a stem is covered with points, as long as half of the stem circumference was captured. Likewise, the absolute point count did not impact the accuracy, but, in contrast, was critical to the completeness with which a scene could be reconstructed. The precision of the laser scanner, on the other hand, was a key factor for the accuracy of the stem diameter estimation. <br>The findings of this study are highly relevant for the flight planning and the sensor selection of future ULS acquisition missions in the context of forest inventories.</p>


Author(s):  
A. Murtiyos ◽  
P. Grussenmeyer ◽  
D. Suwardhi ◽  
W. A. Fadilah ◽  
H. A. Permana ◽  
...  

<p><strong>Abstract.</strong> 3D recording is an important procedure in the conservation of heritage sites. This past decade, a myriad of 3D sensors has appeared in the market with different advantages and disadvantages. Most notably, the laser scanning and photogrammetry methods have become some of the most used techniques in 3D recording. The integration of these different sensors is an interesting topic, one which will be discussed in this paper. Integration is an activity to combine two or more data with different characteristics to produce a 3D model with the best results. The discussion in this study includes the process of acquisition, processing, and analysis of the geometric quality from the results of the 3D recording process; starting with the acquisition method, registration and georeferencing process, up to the integration of laser scanning and photogrammetry 3D point clouds. The final result of the integration of the two point clouds is the 3D point cloud model that has become a single entity. Some detailed parts of the object of interest draw both geometric and textural information from photogrammetry, while laser scanning provided a point cloud depicting the overall overview of the building. The object used as our case study is Sari Temple, located in Special Region of Yogyakarta, Indonesia.</p>


Author(s):  
T. Partovi ◽  
M. Dähne ◽  
M. Maboudi ◽  
D. Krueger ◽  
M. Gerke

Abstract. Laser scanning systems have been developed to capture very high-resolution 3D point clouds and consequently acquire the object geometry. This object measuring technique has a high capacity for being utilized in a wide variety of applications such as indoor and outdoor modelling. The Terrestrial Laser Scanning (TLS) is used as an important data capturing measurement system to provide high quality point cloud from industrial or built-up environments. However, the static nature of the TLS and complexity of the industrial sites necessitate employing a complementary data capturing system e.g. cameras to fill the gaps in the TLS point cloud caused by occlusions which is very common in complex industrial areas. Moreover, employing images provide better radiometric and edge information. This motivated a joint project to develop a system for automatic and robust co-registration of TLS data and images directly, especially for complex objects. In this paper, the proposed methods for various components of this project including gap detection from point cloud, calculation of initial image capturing configuration, user interface and support system for the image capturing procedures, and co-registration between TLS point cloud and photogrammetric point cloud are presented. The primarily results on a complex industrial environment are promising.


Author(s):  
G. Stavropoulou ◽  
G. Tzovla ◽  
A. Georgopoulos

Over the past decade, large-scale photogrammetric products have been extensively used for the geometric documentation of cultural heritage monuments, as they combine metric information with the qualities of an image document. Additionally, the rising technology of terrestrial laser scanning has enabled the easier and faster production of accurate digital surface models (DSM), which have in turn contributed to the documentation of heavily textured monuments. However, due to the required accuracy of control points, the photogrammetric methods are always applied in combination with surveying measurements and hence are dependent on them. Along this line of thought, this paper explores the possibility of limiting the surveying measurements and the field work necessary for the production of large-scale photogrammetric products and proposes an alternative method on the basis of which the necessary control points instead of being measured with surveying procedures are chosen from a dense and accurate point cloud. Using this point cloud also as a surface model, the only field work necessary is the scanning of the object and image acquisition, which need not be subject to strict planning. To evaluate the proposed method an algorithm and the complementary interface were produced that allow the parallel manipulation of 3D point clouds and images and through which single image procedures take place. The paper concludes by presenting the results of a case study in the ancient temple of Hephaestus in Athens and by providing a set of guidelines for implementing effectively the method.


Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5555 ◽  
Author(s):  
Ying Quan ◽  
Mingze Li ◽  
Zhen Zhen ◽  
Yuanshuo Hao ◽  
Bin Wang

Unmanned aerial vehicle (UAV) laser scanning, as an emerging form of near-ground light detection and ranging (LiDAR) remote sensing technology, is widely used for crown structure extraction due to its flexibility, convenience, and high point density. Herein, we evaluated the feasibility of using a low-cost UAV-LiDAR system to extract the fine-scale crown profile of Larix olgensis. Specifically, individual trees were isolated from LiDAR point clouds and then stratified from the point clouds of segmented individual tree crowns at 0.5 m intervals to obtain the width percentiles of each layer as profile points. Four equations (the parabola, Mitscherlich, power, and modified beta equations) were then applied to model the profiles of the entire and upper crown. The results showed that a region-based hierarchical cross-section analysis algorithm can successfully delineate 77.4% of the field-measured trees in high-density (>2400 trees/ha) forest stands. The crown profile generated with the 95th width percentile was adequate when compared with the predicted value of the existing field-based crown profile model (the Pearson correlation coefficient (ρ) was 0.864, root mean square error (RMSE) = 0.3354 m). The modified beta equation yielded slightly better results than the other equations for crown profile fitting and explained 85.9% of the variability in the crown radius for the entire crown and 87.8% of this variability for the upper crown. Compared with the cone and 3D convex hull volumes, the crown volumes predicted by our profile models had significantly smaller errors. The results revealed that the crown profile can be well described by using UAV-LiDAR, providing a novel way to obtain crown profile information without destructive sampling and showing the potential of the use of UAV-LiDAR in future forestry investigations and monitoring.


2017 ◽  
Author(s):  
Luisa Griesbaum ◽  
Sabrina Marx ◽  
Bernhard Höfle

Abstract. In recent years, the number of people affected by flooding caused by extreme weather events has increased considerably. In order to provide support in disaster recovery or to develop mitigation plans, accurate flood information is necessary. Particularly pluvial urban floods, characterized by high temporal and spatial variations, are not well documented. This study proposes a new, low-cost approach to determining local flood elevation and inundation depth of buildings based on user-generated flood images. It first applies close-range digital photogrammetry to generate a geo-referenced 3D point cloud. Second, based on estimated camera orientation parameters, the flood level captured in a single flood image is mapped to the previously derived point cloud. The local flood elevation and the building inundation depth can then be derived automatically from the point cloud. The proposed method is carried out once for each of 66 different flood images showing the same building façade. An overall accuracy of 0.05 m  with an uncertainty of ±0.13 m for the derived flood elevation within the area of interest and an accuracy of 0.13 m  ± 0.10 m for the determined building inundation depth is achieved. Our results demonstrate that the proposed method can provide reliable flood information on a local scale using user-generated flood images as input. The approach can thus allow inundation depth maps to be derived even in complex urban environments with relatively high accuracies.


Author(s):  
M. Kedzierski ◽  
D. Wierzbickia ◽  
A. Fryskowska ◽  
B. Chlebowska

The laser scanning technique is still a very popular and fast growing method of obtaining information on modeling 3D objects. The use of low-cost miniature scanners creates new opportunities for small objects of 3D modeling based on point clouds acquired from the scan. The same, the development of accuracy and methods of automatic processing of this data type is noticeable. The article presents methods of collecting raw datasets in the form of a point-cloud using a low-cost ground-based laser scanner FabScan. As part of the research work 3D scanner from an open source FabLab project was constructed. In addition, the results for the analysis of the geometry of the point clouds obtained by using a low-cost laser scanner were presented. Also, some analysis of collecting data of different structures (made of various materials such as: glass, wood, paper, gum, plastic, plaster, ceramics, stoneware clay etc. and of different shapes: oval and similar to oval and prism shaped) have been done. The article presents two methods used for analysis: the first one - visual (general comparison between the 3D model and the real object) and the second one - comparative method (comparison between measurements on models and scanned objects using the mean error of a single sample of observations). The analysis showed, that the low-budget ground-based laser scanner FabScan has difficulties with collecting data of non-oval objects. Items built of glass painted black also caused problems for the scanner. In addition, the more details scanned object contains, the lower the accuracy of the collected point-cloud is. Nevertheless, the accuracy of collected data (using oval-straight shaped objects) is satisfactory. The accuracy, in this case, fluctuates between ± 0,4 mm and ± 1,0 mm whereas when using more detailed objects or a rectangular shaped prism the accuracy is much more lower, between 2,9 mm and ± 9,0 mm. Finally, the publication presents the possibility (for the future expansion of research) of modernization FabScan by the implementation of a larger amount of camera-laser units. This will enable spots the registration , that are less visible.


Author(s):  
A. Masiero ◽  
A. Guarnieri ◽  
G. Tucci ◽  
A. Vettore

Abstract. 3D building modeling is becoming an important support in civil engineering, architecture and cultural heritage applications. Despite static laser scanning can be considered as the state-of-the-art in such kind of applications, mobile mapping techniques can be considered as a suitable alternative to quickly gather geospatial information. Outdoor mobile mapping can be considered as a mature technique, which takes into advantage of the Global Navigation Satellite System (GNSS)-laser scanning information fusion. Instead, indoor mobile mapping is typically more challenging: the unavailability of GNSS makes the mapping system rely either just on the inertial navigation system, or on some control points. A drift in the navigation solution, and consequently in the 3D reconstruction, is typically visible after a while in the former case, whereas the use of other surveying instruments is required in the latter.This work aims at exploiting geometric characteristics of the buildings, such as symmetries and regularities, to reduce the drift effect in indoor mobile mapping, in particular when dealing with affordable systems. The proposed approach is based on the segmentation of the point clouds acquired with a time of flight camera (ToF), detecting in particular vertical planar surfaces. It is well known that aligning planar surfaces can be a viable way for reducing the drift in this kind of applications. Nevertheless, this paper aims also at investigating the use of geometric symmetries to such aim.The proposed approach is tested on a case study, a building of the University of Padova, whose reconstruction was produced by an ad hoc affordable mobile mapping system, integrating low cost inertial sensors, RGB and ToF camera.


2021 ◽  
Vol 13 (16) ◽  
pp. 3129
Author(s):  
Christoph Gollob ◽  
Tim Ritter ◽  
Ralf Kraßnitzer ◽  
Andreas Tockner ◽  
Arne Nothdurft

The estimation of single tree and complete stand information is one of the central tasks of forest inventory. In recent years, automatic algorithms have been successfully developed for the detection and measurement of trees with laser scanning technology. Nevertheless, most of the forest inventories are nowadays carried out with manual tree measurements using traditional instruments. This is due to the high investment costs for modern laser scanner equipment and, in particular, the time-consuming and incomplete nature of data acquisition with stationary terrestrial laser scanners. Traditionally, forest inventory data are collected through manual surveys with calipers or tapes. Practically, this is both labor and time-consuming. In 2020, Apple implemented a Light Detection and Ranging (LiDAR) sensor in the new Apple iPad Pro (4th Gen) and iPhone Pro 12. Since then, access to LiDAR-generated 3D point clouds has become possible with consumer-level devices. In this study, an Apple iPad Pro was tested to produce 3D point clouds, and its performance was compared with a personal laser scanning (PLS) approach to estimate individual tree parameters in different forest types and structures. Reference data were obtained by traditional measurements on 21 circular forest inventory sample plots with a 7 m radius. The tree mapping with the iPad showed a detection rate of 97.3% compared to 99.5% with the PLS scans for trees with a lower diameter at a breast height (dbh) threshold of 10 cm. The root mean square error (RMSE) of the best dbh measurement out of five different dbh modeling approaches was 3.13 cm with the iPad and 1.59 cm with PLS. The data acquisition time with the iPad was approximately 7.51 min per sample plot; this is twice as long as that with PLS but 2.5 times shorter than that with traditional forest inventory equipment. In conclusion, the proposed forest inventory with the iPad is generally feasible and achieves accurate and precise stem counts and dbh measurements with efficient labor effort compared to traditional approaches. Along with future technological developments, it is expected that other consumer-level handheld devices with integrated laser scanners will also be developed beyond the iPad, which will serve as an accurate and cost-efficient alternative solution to the approved but relatively expensive TLS and PLS systems. Such a development would be mandatory to broadly establish digital technology and fully automated routines in forest inventory practice. Finally, high-level progress is generally expected for the broader scientific community in forest ecosystem monitoring, as the collection of highly precise 3D point cloud data is no longer hindered by financial burdens.


Sign in / Sign up

Export Citation Format

Share Document