scholarly journals Genomic and Meiotic Changes Accompanying Polyploidization

Plants ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 125
Author(s):  
Francesco Blasio ◽  
Pilar Prieto ◽  
Mónica Pradillo ◽  
Tomás Naranjo

Hybridization and polyploidy have been considered as significant evolutionary forces in adaptation and speciation, especially among plants. Interspecific gene flow generates novel genetic variants adaptable to different environments, but it is also a gene introgression mechanism in crops to increase their agronomical yield. An estimate of 9% of interspecific hybridization has been reported although the frequency varies among taxa. Homoploid hybrid speciation is rare compared to allopolyploidy. Chromosome doubling after hybridization is the result of cellular defects produced mainly during meiosis. Unreduced gametes, which are formed at an average frequency of 2.52% across species, are the result of altered spindle organization or orientation, disturbed kinetochore functioning, abnormal cytokinesis, or loss of any meiotic division. Meiotic changes and their genetic basis, leading to the cytological diploidization of allopolyploids, are just beginning to be understood especially in wheat. However, the nature and mode of action of homoeologous recombination suppressor genes are poorly understood in other allopolyploids. The merger of two independent genomes causes a deep modification of their architecture, gene expression, and molecular interactions leading to the phenotype. We provide an overview of genomic changes and transcriptomic modifications that particularly occur at the early stages of allopolyploid formation.

Author(s):  
Juan F. Masello ◽  
Peter G. Ryan ◽  
Lara D. Shepherd ◽  
Petra Quillfeldt ◽  
Yves Cherel ◽  
...  

AbstractInterspecific introgression can occur between species that evolve rapidly within an adaptive radiation. Pachyptila petrels differ in bill size and are characterised by incomplete reproductive isolation, leading to interspecific gene flow. Salvin’s prion (Pachyptila salvini), whose bill width is intermediate between broad-billed (P. vittata) and Antarctic (P. desolata) prions, evolved through homoploid hybrid speciation. MacGillivray’s prion (P. macgillivrayi), known from a single population on St Paul (Indian Ocean), has a bill width intermediate between salvini and vittata and could also be the product of interspecies introgression or hybrid speciation. Recently, another prion population phenotypically similar to macgillivrayi was discovered on Gough (Atlantic Ocean), where it breeds 3 months later than vittata. The similarity in bill width between the medium-billed birds on Gough and macgillivrayi suggest that they could be closely related. In this study, we used genetic and morphological data to infer the phylogenetic position and evolutionary history of P. macgillivrayi and the Gough medium-billed prion relative other Pachyptila taxa, to determine whether species with medium bill widths evolved through common ancestry or convergence. We found that Gough medium-billed prions belong to the same evolutionary lineage as macgillivrayi, representing a new population of MacGillivray’s prion that originated through a colonisation event from St Paul. We show that macgillivrayi’s medium bill width evolved through divergence (genetic drift) and independently from that of salvini, which evolved through hybridisation (gene flow). This represents the independent convergence towards a similarly medium-billed phenotype. The newly discovered MacGillivray’s prion population on Gough is of utmost conservation relevance, as the relict macgillivrayi population in the Indian Ocean is very small.


Plants ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 194 ◽  
Author(s):  
Ayesha Manzoor ◽  
Touqeer Ahmad ◽  
Muhammad Bashir ◽  
Ishfaq Hafiz ◽  
Cristian Silvestri

Polyploidy has the utmost importance in horticulture for the development of new ornamental varieties with desirable morphological traits referring to plant size and vigor, leaf thickness, larger flowers with thicker petals, intense color of leaves and flowers, long lasting flowers, compactness, dwarfness and restored fertility. Polyploidy may occur naturally due to the formation of unreduced gametes or can be artificially induced by doubling the number of chromosomes in somatic cells. Usually, natural polyploid plants are unavailable, so polyploidy is induced synthetically with the help of mitotic inhibitors. Colchicine is a widely used mitotic inhibitor for the induction of polyploidy in plants during their cell division by inhibiting the chromosome segregation. Different plant organs like seeds, apical meristems, flower buds, and roots can be used to induce polyploidy through many application methods such as dipping/soaking, dropping or cotton wool. Flow cytometry and chromosome counting, with an observation of morphological and physiological traits are routine procedures for the determination of ploidy level in plants.


Author(s):  
Andreina I Castillo ◽  
Rodrigo P P Almeida

Abstract Nucleotide composition (GC content) varies across bacteria species, genome regions, and specific genes. In Xylella fastidiosa, a vector-borne fastidious plant pathogen infecting multiple crops, GC content ranges between ∼51-52%; however, these values were gathered using limited genomic data. We evaluated GC content variations across X. fastidiosa subspecies fastidiosa (N = 194), subsp. pauca (N = 107), and subsp. multiplex (N = 39). Genomes were classified based on plant host and geographic origin; individual genes within each genome were classified based on gene function, strand, length, ortholog group, Core vs. Accessory, and Recombinant vs. Non-recombinant. GC content was calculated for each gene within each evaluated genome. The effects of genome and gene level variables were evaluated with a mixed effect ANOVA, and the marginal-GC content was calculated for each gene. Also, the correlation between gene-specific GC content vs. natural selection (dN/dS) and recombination/mutation (r/m) was estimated. Our analyses show that intra-genomic changes in nucleotide composition in X. fastidiosa are small and influenced by multiple variables. Higher AT-richness is observed in genes involved in replication and translation, and genes in the leading strand. In addition, we observed a negative correlation between high-AT and dN/dS in subsp. pauca. The relationship between recombination and GC content varied between core and accessory genes. We hypothesize that distinct evolutionary forces and energetic constraints both drive and limit these small variations in nucleotide composition.


Genetics ◽  
2019 ◽  
Vol 211 (3) ◽  
pp. 1059-1073 ◽  
Author(s):  
Mark S. Hibbins ◽  
Matthew W. Hahn

Introgression is a pervasive biological process, and many statistical methods have been developed to infer its presence from genomic data. However, many of the consequences and genomic signatures of introgression remain unexplored from a methodological standpoint. Here, we develop a model for the timing and direction of introgression based on the multispecies network coalescent, and from it suggest new approaches for testing introgression hypotheses. We suggest two new statistics, D1 and D2, which can be used in conjunction with other information to test hypotheses relating to the timing and direction of introgression, respectively. D1 may find use in evaluating cases of homoploid hybrid speciation (HHS), while D2 provides a four-taxon test for polarizing introgression. Although analytical expectations for our statistics require a number of assumptions to be met, we show how simulations can be used to test hypotheses about introgression when these assumptions are violated. We apply the D1 statistic to genomic data from the wild yeast Saccharomyces paradoxus—a proposed example of HHS—demonstrating its use as a test of this model. These methods provide new and powerful ways to address questions relating to the timing and direction of introgression.


2016 ◽  
Vol 103 (2) ◽  
pp. 246-259 ◽  
Author(s):  
J. R. P. Worth ◽  
M. J. Larcombe ◽  
S. Sakaguchi ◽  
J. R. Marthick ◽  
D. M. J. S. Bowman ◽  
...  

Taxon ◽  
2010 ◽  
Vol 59 (5) ◽  
pp. 1375-1386 ◽  
Author(s):  
Richard J. Abbott ◽  
Matthew J. Hegarty ◽  
Simon J. Hiscock ◽  
Adrian C. Brennan

2013 ◽  
Vol 27 (2) ◽  
pp. 275-289 ◽  
Author(s):  
O. M. Selz ◽  
R. Thommen ◽  
M. E. Maan ◽  
O. Seehausen

2015 ◽  
Vol 282 (1807) ◽  
pp. 20150157 ◽  
Author(s):  
Vladimir A. Lukhtanov ◽  
Nazar A. Shapoval ◽  
Boris A. Anokhin ◽  
Alsu F. Saifitdinova ◽  
Valentina G. Kuznetsova

Genomes of numerous diploid plant and animal species possess traces of interspecific crosses, and many researches consider them as support for homoploid hybrid speciation (HHS), a process by which a new reproductively isolated species arises through hybridization and combination of parts of the parental genomes, but without an increase in ploidy. However, convincing evidence for a creative role of hybridization in the origin of reproductive isolation between hybrid and parental forms is extremely limited. Here, through studying Agrodiaetus butterflies, we provide proof of a previously unknown mode of HHS based on the formation of post-zygotic reproductive isolation via hybridization of chromosomally divergent parental species and subsequent fixation of a novel combination of chromosome fusions/fissions in hybrid descendants. We show that meiotic segregation, operating in the hybrid lineage, resulted in the formation of a new diploid genome, drastically rearranged in terms of chromosome number. We also demonstrate that during the heterozygous stage of the hybrid species formation, recombination was limited between rearranged chromosomes of different parental origin, representing evidence that the reproductive isolation was a direct consequence of hybridization.


Sign in / Sign up

Export Citation Format

Share Document