scholarly journals Root Development of Bell Pepper (Capsicum annuum L.) as Affected by Water Salinity and Sink Strength

Plants ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 35 ◽  
Author(s):  
Ran Erel ◽  
Thuc T. Le ◽  
Amram Eshel ◽  
Shabtai Cohen ◽  
Rivka Offenbach ◽  
...  

Fruits are the dominant sinks for assimilates. At optimal conditions, assimilates supply can meet the demand of fruits and those of the vegetative organs; however, extreme circumstances such as strong sink strength or an environmental stress may disturb this fine balance. While most studies focus on aboveground parameters, information regarding root growth dynamics under variable sink strength are scarce. The objective of this study was to evaluate the effect of sink strength (represented by fruit load) and salinity on bell-pepper root development. Three levels of fruit load were combined with two salinity levels in plants grown in an aeroponic system. Root growth was determined both by root capacitance and destructive measurements. Salinity and sink strength significantly affected root, shoot and fruit growth dynamics. Root growth was less affected by fruit load. Salinity stress was negatively associated with shoot growth, but after an acclimation period, salinity enhanced root development. Additionally, this study shows for the first time that root capacitance is a valid approach for non-destructive measurement of root development in aeroponic systems. The good correlation measured by us (r2 0.86) opens new opportunities for continuous root growth monitoring in aeroponic systems in the future.

HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1026C-1026
Author(s):  
Shengrui Yao ◽  
Ian A. Merwin ◽  
Michael G. Brown

Rhizotron observations enabled us to compare the performance of three apple (Malu ×domestica) rootstock clones following different pre-plant soil treatments in an apple replant study at Ithaca, NY. Trees were planted in Nov. 2001, with one minirhizotron tube per tree in three replicate plots of three rootstocks (M7, CG30, and CG6210), three pre-plant soil treatments (fumigation, compost amendment, and untreated controls), and two planting positions (within the old tree rows, or in the old grass lanes). Monthly root observations were conducted during the 2003 and 2004 growing seasons. There were substantially fewer new roots observed in the first bearing year (2004) than the previous nonbearing year (2003), for all three rootstocks. A root-growth peak in early July accounted for more than 50% of all new roots in 2003, but there was no midsummer root growth peak in 2004. Neither pre-plant soil treatments nor old row or grass-lane planting positions had much influence on root growth. The median lifespan for roots of CG6210 was twice as long as that of CG30 and M7 in 2004. Also, CG6210 had more roots below 30-cm depth, while M7 had more roots from 11–20 cm. Trees grafted on CG6210 were bigger and yielded more fruit in the third year after planting, compared with trees on CG30 and M7 rootstocks. Crop load severely inhibited new root development and changed root-growth dynamics during the first cropping year, with a surge in root growth after fruit harvest in Oct. 2004. Rootstock genotype was the dominant influence on root lifespan and distribution, compared with pre-plant soil fumigation, compost amendments, or replanting positions within the previous orchard rows or grass lanes.


2021 ◽  
Author(s):  
Simone F da Silva ◽  
Marcela T Miranda ◽  
Vladimir E Costa ◽  
Eduardo C Machado ◽  
Rafael V Ribeiro

Abstract Carbon allocation between source and sink organs determines plant growth and is influenced by environmental conditions. Under water deficit, plant growth is inhibited before photosynthesis and shoot growth tends to be more sensitive than root growth. However, the modulation of source-sink relationship by rootstocks remain unsolved in citrus trees under water deficit. Citrus plants grafted on Rangpur lime are drought tolerant, which may be related to a fine coordination of the source-sink relationship for maintaining root growth. Here, we followed 13C allocation and evaluated physiological responses and growth of Valencia orange trees grafted on three citrus rootstocks (Rangpur lime, Swingle citrumelo and Sunki mandarin) under water deficit. As compared to plants on Swingle and Sunki rootstocks, ones grafted on Rangpur lime showed higher stomatal sensitivity to the initial variation of water availability and less accumulation of non-structural carbohydrates in roots under water deficit. High 13C allocation found in Rangpur lime roots indicates this rootstock has high sink demand associated with high root growth under water deficit. Our data suggest that Rangpur lime rootstock used photoassimilates as sources of energy and carbon skeletons for growing under drought, which is likely related to increases in root respiration. Taken together, our data revealed that carbon supply by leaves and delivery to roots are critical for maintaining root growth and improving drought tolerance, with citrus rootstocks showing differential sink strength under water deficit.


Plant Methods ◽  
2019 ◽  
Vol 15 (1) ◽  
Author(s):  
Michael Gomez Selvaraj ◽  
Maria Elker Montoya-P ◽  
John Atanbori ◽  
Andrew P. French ◽  
Tony Pridmore

Abstract Background Root and tuber crops are becoming more important for their high source of carbohydrates, next to cereals. Despite their commercial impact, there are significant knowledge gaps about the environmental and inherent regulation of storage root (SR) differentiation, due in part to the innate problems of studying storage roots and the lack of a suitable model system for monitoring storage root growth. The research presented here aimed to develop a reliable, low-cost effective system that enables the study of the factors influencing cassava storage root initiation and development. Results We explored simple, low-cost systems for the study of storage root biology. An aeroponics system described here is ideal for real-time monitoring of storage root development (SRD), and this was further validated using hormone studies. Our aeroponics-based auxin studies revealed that storage root initiation and development are adaptive responses, which are significantly enhanced by the exogenous auxin supply. Field and histological experiments were also conducted to confirm the auxin effect found in the aeroponics system. We also developed a simple digital imaging platform to quantify storage root growth and development traits. Correlation analysis confirmed that image-based estimation can be a surrogate for manual root phenotyping for several key traits. Conclusions The aeroponic system developed from this study is an effective tool for examining the root architecture of cassava during early SRD. The aeroponic system also provided novel insights into storage root formation by activating the auxin-dependent proliferation of secondary xylem parenchyma cells to induce the initial root thickening and bulking. The developed system can be of direct benefit to molecular biologists, breeders, and physiologists, allowing them to screen germplasm for root traits that correlate with improved economic traits.


2012 ◽  
Vol 32 (2) ◽  
pp. 281-290 ◽  
Author(s):  
Carmina Reig ◽  
Carlos Mesejo ◽  
Amparo Martínez-Fuentes ◽  
Domingo J. Iglesias ◽  
Manuel Agustí

2018 ◽  
Author(s):  
Thea van den Berg ◽  
Kirsten H. ten Tusscher

AbstractThe root system is a major determinant of plant fitness. Its capacity to supply the plant with sufficient water and nutrients strongly depends on root system architecture, which arises from the repeated branching off of lateral roots. A critical first step in lateral root formation is priming, which prepatterns sites competent of forming a lateral root. Priming is characterized by temporal oscillations in auxin, auxin signalling and gene expression in the root meristem, which through growth become transformed into a spatially repetitive pattern of competent sites. Previous studies have demonstrated the importance of auxin synthesis, transport and perception for the amplitude of these oscillations and their chances of producing an actual competent site. Additionally, repeated lateral root cap apoptosis was demonstrated to be strongly correlated with repetitive lateral root priming. Intriguingly, no single mutation has been identified that fully abolishes lateral root formation, and thusfar the mechanism underlying oscillations has remained unknown. In this study, we investigated the impact of auxin reflux loop properties combined with root growth dynamics on priming, using a computational approach. To this end we developed a novel multi-scale root model incorporating a realistic root tip architecture and reflux loop properties as well as root growth dynamics. Excitingly, in this model, repetitive auxin elevations automatically emerge. First, we show that root tip architecture and reflux loop properties result in an auxin loading zone at the start of the elongation zone, with preferential auxin loading in narrow vasculature cells. Second, we demonstrate how meristematic root growth dynamics causes regular alternations in the sizes of cells arriving at the elongation zone, which subsequently become amplified during cell expansion. These cell size differences translate into differences in cellular auxin loading potential. Combined, these properties result in temporal and spatial fluctuations in auxin levels in vasculature and pericycle cells. Our model predicts that temporal priming frequency predominantly depends on cell cycle duration, while cell cycle duration together with meristem size control lateral root spacing.


2010 ◽  
Vol 37 (4) ◽  
pp. 304 ◽  
Author(s):  
Junhua Ao ◽  
Jiabing Fu ◽  
Jiang Tian ◽  
Xiaolong Yan ◽  
Hong Liao

Root morphology and architecture are believed to be important for plant phosphorus (P) efficiency, but their genetic information is relatively scarce. In the present study, a field and a specially designed minirhizotron experiments were conducted using two soybean (Glycine max L. Merr.) genotypes and their 88 recombinant inbred lines (RILs) to elucidate the genetic variability for root morph-architecture traits and root growth dynamics as related to P efficiency in soybean. The results indicated that the root morph-architecture traits were continually segregated in the RILs with a normal distribution, indicating which are possibly controlled by quantitative trait loci. Significantly positive correlations were found between root and P traits, suggesting feasibility of screening P efficient genotype through simple selection of root traits in field. Most root morph-architecture traits were closely correlated, showing a coordinating contribution to P efficiency. Furthermore, root morphological traits always had higher heritability than architecture traits, thus, could serve as more reliable index in field selection. The dynamic parameters of root growth from the minirhizotron experiment showed that the P efficient genotype established longer and larger root system with preferring distribution in surface layer and also kept more active roots, therefore, had a better growth performance in field, than the P-inefficient genotype. Taken together, this is the first report on in situ root growth dynamics and its relation to P efficiency using minirhizotron systems in crops. Our findings help to better understand the relationships between P efficiency and root traits and, thus, facilitate development of P efficient genotypes in crops.


1996 ◽  
Vol 185 (1) ◽  
pp. 125-135 ◽  
Author(s):  
S. G. K. Adiku ◽  
R. D. Braddock ◽  
C. W. Rose

Weed Science ◽  
1972 ◽  
Vol 20 (1) ◽  
pp. 1-3 ◽  
Author(s):  
C. S. Hoveland ◽  
G. A. Buchanan

Fall panicum (Panicum dichotomiflorum Michx.) and Texas panicum (Panicum texanum Buckl.) were grown in the greenhouse under flooding treatments of 0, 6, and 9 days in 10 for 1 month. Fall panicum was more tolerant of flooded soil than was Texas panicum. Root development of Texas panicum was reduced by 50% under all flooding treatments. Herbage and root growth of fall panicum with flooding was similar to that on well-drained soil. Fall panicum root diameter was greater than that of Texas panicum, but both species increased under flooding. Tolerance of fall panicum to flooding may partially explain why it competes so well with crop plants during wet periods.


Sign in / Sign up

Export Citation Format

Share Document