scholarly journals LHCSR3-Type NPQ Prevents Photoinhibition and Slowed Growth under Fluctuating Light in Chlamydomonas reinhardtii

Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1604
Author(s):  
Thomas Roach

Natural light intensities can rise several orders of magnitude over subsecond time spans, posing a major challenge for photosynthesis. Fluctuating light tolerance in the green alga Chlamydomonas reinhardtii requires alternative electron pathways, but the role of nonphotochemical quenching (NPQ) is not known. Here, fluctuating light (10 min actinic light followed by 10 min darkness) led to significant increase in NPQ/qE-related proteins, LHCSR1 and LHCSR3, relative to constant light of the same subsaturating or saturating intensity. Elevated levels of LHCSR1/3 increased the ability of cells to safely dissipate excess light energy to heat (i.e., qE-type NPQ) during dark to light transition, as measured with chlorophyll fluorescence. The low qE phenotype of the npq4 mutant, which is unable to produce LHCSR3, was abolished under fluctuating light, showing that LHCSR1 alone enables very high levels of qE. Photosystem (PS) levels were also affected by light treatments; constant light led to lower PsbA levels and Fv/Fm values, while fluctuating light led to lower PsaA and maximum P700+ levels, indicating that constant and fluctuating light induced PSII and PSI photoinhibition, respectively. Under fluctuating light, npq4 suffered more PSI photoinhibition and significantly slower growth rates than parental wild type, whereas npq1 and npq2 mutants affected in xanthophyll carotenoid compositions had identical growth under fluctuating and constant light. Overall, LHCSR3 rather than total qE capacity or zeaxanthin is shown to be important in C. reinhardtii in tolerating fluctuating light, potentially via preventing PSI photoinhibition.

2001 ◽  
Vol 359 (1) ◽  
pp. 65-75 ◽  
Author(s):  
Valeria MENCHISE ◽  
Catherine CORBIER ◽  
Claude DIDIERJEAN ◽  
Michele SAVIANO ◽  
Ettore BENEDETTI ◽  
...  

Thioredoxins are ubiquitous proteins which catalyse the reduction of disulphide bridges on target proteins. The catalytic mechanism proceeds via a mixed disulphide intermediate whose breakdown should be enhanced by the involvement of a conserved buried residue, Asp-30, as a base catalyst towards residue Cys-39. We report here the crystal structure of wild-type and D30A mutant thioredoxin h from Chlamydomonas reinhardtii, which constitutes the first crystal structure of a cytosolic thioredoxin isolated from a eukaryotic plant organism. The role of residue Asp-30 in catalysis has been revisited since the distance between the carboxylate OD1 of Asp-30 and the sulphur SG of Cys-39 is too great to support the hypothesis of direct proton transfer. A careful analysis of all available crystal structures reveals that the relative positioning of residues Asp-30 and Cys-39 as well as hydrophobic contacts in the vicinity of residue Asp-30 do not allow a conformational change sufficient to bring the two residues close enough for a direct proton transfer. This suggests that protonation/deprotonation of Cys-39 should be mediated by a water molecule. Molecular-dynamics simulations, carried out either in vacuo or in water, as well as proton-inventory experiments, support this hypothesis. The results are discussed with respect to biochemical and structural data.


Plant Methods ◽  
2019 ◽  
Vol 15 (1) ◽  
Author(s):  
Dominik Schneider ◽  
Laura S. Lopez ◽  
Meng Li ◽  
Joseph D. Crawford ◽  
Helmut Kirchhoff ◽  
...  

Abstract Background Over the last years, several plant science labs have started to employ fluctuating growth light conditions to simulate natural light regimes more closely. Many plant mutants reveal quantifiable effects under fluctuating light despite being indistinguishable from wild-type plants under standard constant light. Moreover, many subtle plant phenotypes become intensified and thus can be studied in more detail. This observation has caused a paradigm shift within the photosynthesis research community and an increasing number of scientists are interested in using fluctuating light growth conditions. However, high installation costs for commercial controllable LED setups as well as costly phenotyping equipment can make it hard for small academic groups to compete in this emerging field. Results We show a simple do-it-yourself approach to enable fluctuating light growth experiments. Our results using previously published fluctuating light sensitive mutants, stn7 and pgr5, confirm that our low-cost setup yields similar results as top-prized commercial growth regimes. Moreover, we show how we increased the throughput of our Walz IMAGING-PAM, also found in many other departments around the world. We have designed a Python and R-based open source toolkit that allows for semi-automated sample segmentation and data analysis thereby reducing the processing bottleneck of large experimental datasets. We provide detailed instructions on how to build and functionally test each setup. Conclusions With material costs well below USD$1000, it is possible to setup a fluctuating light rack including a constant light control shelf for comparison. This allows more scientists to perform experiments closer to natural light conditions and contribute to an emerging research field. A small addition to the IMAGING-PAM hardware not only increases sample throughput but also enables larger-scale plant phenotyping with automated data analysis.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 454-454
Author(s):  
Yasuaki Shida ◽  
Laura L. Swystun ◽  
Christine Brown ◽  
Jeff Mewburn ◽  
Kate Sponagle ◽  
...  

Background The multimeric glycoprotein von Willebrand factor (VWF) mediates platelet adhesion and aggregation at the site of vessel injury. The adhesive property of VWF is regulated by its multimer length, such that ultra large VWF (ULVWF) multimers, newly released from the endothelium, have greater hemostatic activity. multimer size is regulated by the metalloprotease ADAMTS13, which cleaves the A2 domain to reduce VWF multimer size and functional activity. static conditions, VWF maintains a globular conformation and the ADAMTS13 cleavage site is inaccessible. However, the exposure of endothelial-anchored VWF to tensile forces mediated by platelets and hydrodynamic shear enhance the cleavage of VWF by ADAMTS13. releases VWF of optimal hemostatic length from the endothelium into the plasma. We have previously reported using a flow chamber model which demonstrates that in addition to regulating VWF length and activity at the site of release, ADAMTS13 also associates with VWF at the site of thrombus formation. observed that under conditions of high and very high shear, ADAMTS13 reduced the size of thrombus volume., multi-coloured immunostaining revealed that ADAMTS13 co-localized with VWF and platelets at the top and middle layers of the thrombus, in the presence of very high shear. Aim To better understand the mechanism by which ADAMTS13 regulates thrombus size in our flow chamber model, we assessed the contribution of platelet tensile force to the localization of ADAMTS13 at the site of the thrombus. this model, the contributions of platelet GPIb, GPIIbIIIa, and P-selectin to ADAMTS13 localization were observed. Method Full length mouse VWF and ADAMTS13 cDNA were cloned into pCIneo and pcDNA3.1 plasmid, respectively. The gain of platelet GPIb binding mutation V1316M, and loss of GPIIbIIIa binding mutation (RGD to RGG) were introduced by site-directed-mutagenesis. mCherry was cloned at the C terminus of ADAMTS13 with a 12AA linker. Recombinant mVWF and mADAMTS13-mCherry proteins were produced via HEK293T cells by calcium phosphate transient transfection. mADAMTS13-mCherry (2 U/mL) and wild type or mutant mVWF (4 U/mL) was added to whole blood obtained from VWF-/-/ADAMTS13-/- double knockout mice. Whole blood containing DiOC6-labeled platelets was perfused over a collagen coated flow chamber at very high shear (7500s-1). The role of P-selectin was also analyzed by adding a P-selectin blocking antibody to blood obtained from ADAMTS13-/-knockout mice prior to the flow chamber experiment. After the perfusion, thrombi were fixed and immunostaining was performed to further analyze the distribution of platelets, VWF and ADAMTS13. Result As previously reported, ADAMTS13 localization was observed in the top and middle layers of the thrombus in the presence of wild type mVWF. The GPIb gain-of-function mutation V1316M increased both platelet (126%, p<0.0001) and VWF (190% and p<0.0001) accumulation at the thrombus site. ADAMTS13 localization was also increased (135%, p<0.001) relative to the binding to wild type VWF. Interestingly, with this gain-of-function VWF mutant, ADAMTS13 localization was found throughout the entire thrombus. In contrast, the GPIIbIIIa RGD binding mutant demonstrated decreased VWF (56%, p<0.01), and ADAMTS13 (82%, p<0.05) intensity, although platelet intensity was unaffected. to wild type, ADAMTS13 localized to the middle and top layers of the thrombus. Finally, inhibition of P-selectin significantly decreased VWF (46%, p<0.01) and ADAMTS13 (34%, p<0.01) localization to the thrombus, but again did not significantly alter platelet binding. Conclusion These studies demonstrate the central role of platelet-mediated mechanical tensile force on the regulation of thrombus growth at the site of platelet accumulation. Enhanced tensile force induced by increased GPIb binding resulted in increased ADAMTS13 localization, while reduced tensile force through loss of GPIIbIIIa or P-selectin binding decreased ADAMTS13 localization. This suggests that ADAMTS13 activity at the site of thrombus formation is maintained by the combination of hydrodynamic shear force and platelet tethering. aggregate, these studies suggest that under conditions of shear, ADAMTS13 regulates thrombus size by preserving the hemostatic function of the thrombus, and preventing dysregulated thrombus growth. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1999 ◽  
Vol 93 (12) ◽  
pp. 4242-4247
Author(s):  
T.A. Bayston ◽  
A. Tripodi ◽  
P.M. Mannucci ◽  
E. Thompson ◽  
H. Ireland ◽  
...  

We have investigated the basis of antithrombin deficiency in an asymptomatic individual (and family) with borderline levels (≈70% antigen and activity) of antithrombin. Direct sequencing of amplified DNA showed a mutation in codon 135, AAC to ACC, predicting a heterozygous Asn135Thr substitution. This substitution alters the predicted consensus sequence for glycosylation, Asn-X-Ser, adjacent to the heparin interaction site of antithrombin. The antithrombin isolated from plasma of the proband by heparin-Sepharose chromatography contained amounts of β antithrombin (the very high affinity fraction) greatly increased (≈20% to 30% of total) above the trace levels found in normals. Expression of the residue 135 variant in both a cell-free system and COS-7 cells confirmed altered glycosylation arising as a consequence of the mutation. Wild-type and variant protein were translated and exported from COS-7 cells with apparently equal efficiency, in contrast to the reduced level of variant observed in plasma of the affected individual. This case represents a novel cause of antithrombin deficiency, removal of glycosylation concensus sequence, and highlights the potentially important role of β antithrombin in regulating coagulation.


2019 ◽  
Author(s):  
Dominik Schneider ◽  
Laura S. Lopez ◽  
Meng Li ◽  
Joseph D. Crawford ◽  
Helmut Kirchhoff ◽  
...  

AbstractBackgroundOver the last years, several plant science labs have started to employ fluctuating growth light conditions to simulate natural light regimes more closely. Many plant mutants reveal quantifiable effects under fluctuating light despite being indistinguishable from wild-type plants under standard constant light. Moreover, many subtle plant phenotypes become intensified and thus can be studied in more detail. This observation has caused a paradigm shift within the photosynthesis research community and an increasing number of scientists are interested in using fluctuating light growth conditions. However, high installation costs for commercial controllable LED setups as well as costly phenotyping equipment can make it hard for small academic groups to compete in this emerging field.ResultsWe show a simple do-it-yourself approach to enable fluctuating light growth experiments. Our results using previously published fluctuating light sensitive mutants, stn7 and pgr5, confirm that our low-cost setup yields similar results as top-prized commercial growth regimes. Moreover, we show how we increased the throughput of our Walz IMAGING-PAM, also found in many other departments around the world. We have designed a Python and R-based open source toolkit that allows for semi-automated sample segmentation and data analysis thereby reducing the processing bottleneck of large experimental datasets. We provide detailed instructions on how to build and functionally test each setup.ConclusionsWith material costs well below USD$1000, it is possible to setup a fluctuating light rack including a constant light control shelf for comparison. This allows more scientists to perform experiments closer to natural light conditions and contribute to an emerging research field. A small addition to the IMAGING-PAM hardware not only increases sample throughput but also enables larger-scale plant phenotyping with automated data analysis.


Blood ◽  
1999 ◽  
Vol 93 (12) ◽  
pp. 4242-4247 ◽  
Author(s):  
T.A. Bayston ◽  
A. Tripodi ◽  
P.M. Mannucci ◽  
E. Thompson ◽  
H. Ireland ◽  
...  

Abstract We have investigated the basis of antithrombin deficiency in an asymptomatic individual (and family) with borderline levels (≈70% antigen and activity) of antithrombin. Direct sequencing of amplified DNA showed a mutation in codon 135, AAC to ACC, predicting a heterozygous Asn135Thr substitution. This substitution alters the predicted consensus sequence for glycosylation, Asn-X-Ser, adjacent to the heparin interaction site of antithrombin. The antithrombin isolated from plasma of the proband by heparin-Sepharose chromatography contained amounts of β antithrombin (the very high affinity fraction) greatly increased (≈20% to 30% of total) above the trace levels found in normals. Expression of the residue 135 variant in both a cell-free system and COS-7 cells confirmed altered glycosylation arising as a consequence of the mutation. Wild-type and variant protein were translated and exported from COS-7 cells with apparently equal efficiency, in contrast to the reduced level of variant observed in plasma of the affected individual. This case represents a novel cause of antithrombin deficiency, removal of glycosylation concensus sequence, and highlights the potentially important role of β antithrombin in regulating coagulation.


1992 ◽  
Vol 70 (3-4) ◽  
pp. 255-258 ◽  
Author(s):  
Bradford S. Hamilton ◽  
Kazuo Nakamura ◽  
Daniel A. K. Roncari

Paralyzed flagellar mutants pf-1, pf-2, pf-7, and pf-18 of the green alga Chlamydomonas reinhardtii (Dangeard) were shown to store a significantly greater amount of starch than the motile wild type 137c+. The increase in starch storage was significant relative to protein, chlorophyll, and cell number. Analysis of average cell size revealed that the paralyzed mutants were larger than the wild type. This increase in storage molecule accumulation supports an inverse relationship between chemical energy storage and energy utilization for biomechanical/motile cellular functions. Chlamydomonas reinhardtii provides a useful model for studies of the role of cytoskeletal activity in the energy relationship and balance of organisms.Key words: Chlamydomonas, cytoskeleton, paralyzed flagella, starch, bioenergetics.


2004 ◽  
Vol 70 (3) ◽  
pp. 1287-1296 ◽  
Author(s):  
Martine Moris ◽  
Bruno Dombrecht ◽  
Chuanwu Xi ◽  
Jos Vanderleyden ◽  
Jan Michiels

ABSTRACT The Rhizobium etli CNPAF512 fnrN gene was identified in the fixABCX rpoN 2 region. The corresponding protein contains the hallmark residues characteristic of proteins belonging to the class IB group of Fnr-related proteins. The expression of R. etli fnrN is highly induced under free-living microaerobic conditions and during symbiosis. This microaerobic and symbiotic induction of fnrN is not controlled by the sigma factor RpoN and the symbiotic regulator nifA or fixLJ, but it is due to positive autoregulation. Inoculation of Phaseolus vulgaris with an R. etli fnrN mutant strain resulted in a severe reduction in the bacteroid nitrogen fixation capacity compared to the wild-type capacity, confirming the importance of FnrN during symbiosis. The expression of the R. etli fixN, fixG, and arcA genes is strictly controlled by fnrN under free-living microaerobic conditions and in bacteroids during symbiosis with the host. However, there is an additional level of regulation of fixN and fixG under symbiotic conditions. A phylogenetic analysis of the available rhizobial FnrN and FixK proteins grouped the proteins in three different clusters.


Sign in / Sign up

Export Citation Format

Share Document