Familial Overexpression of β Antithrombin Caused by an Asn135Thr Substitution

Blood ◽  
1999 ◽  
Vol 93 (12) ◽  
pp. 4242-4247
Author(s):  
T.A. Bayston ◽  
A. Tripodi ◽  
P.M. Mannucci ◽  
E. Thompson ◽  
H. Ireland ◽  
...  

We have investigated the basis of antithrombin deficiency in an asymptomatic individual (and family) with borderline levels (≈70% antigen and activity) of antithrombin. Direct sequencing of amplified DNA showed a mutation in codon 135, AAC to ACC, predicting a heterozygous Asn135Thr substitution. This substitution alters the predicted consensus sequence for glycosylation, Asn-X-Ser, adjacent to the heparin interaction site of antithrombin. The antithrombin isolated from plasma of the proband by heparin-Sepharose chromatography contained amounts of β antithrombin (the very high affinity fraction) greatly increased (≈20% to 30% of total) above the trace levels found in normals. Expression of the residue 135 variant in both a cell-free system and COS-7 cells confirmed altered glycosylation arising as a consequence of the mutation. Wild-type and variant protein were translated and exported from COS-7 cells with apparently equal efficiency, in contrast to the reduced level of variant observed in plasma of the affected individual. This case represents a novel cause of antithrombin deficiency, removal of glycosylation concensus sequence, and highlights the potentially important role of β antithrombin in regulating coagulation.

Blood ◽  
1999 ◽  
Vol 93 (12) ◽  
pp. 4242-4247 ◽  
Author(s):  
T.A. Bayston ◽  
A. Tripodi ◽  
P.M. Mannucci ◽  
E. Thompson ◽  
H. Ireland ◽  
...  

Abstract We have investigated the basis of antithrombin deficiency in an asymptomatic individual (and family) with borderline levels (≈70% antigen and activity) of antithrombin. Direct sequencing of amplified DNA showed a mutation in codon 135, AAC to ACC, predicting a heterozygous Asn135Thr substitution. This substitution alters the predicted consensus sequence for glycosylation, Asn-X-Ser, adjacent to the heparin interaction site of antithrombin. The antithrombin isolated from plasma of the proband by heparin-Sepharose chromatography contained amounts of β antithrombin (the very high affinity fraction) greatly increased (≈20% to 30% of total) above the trace levels found in normals. Expression of the residue 135 variant in both a cell-free system and COS-7 cells confirmed altered glycosylation arising as a consequence of the mutation. Wild-type and variant protein were translated and exported from COS-7 cells with apparently equal efficiency, in contrast to the reduced level of variant observed in plasma of the affected individual. This case represents a novel cause of antithrombin deficiency, removal of glycosylation concensus sequence, and highlights the potentially important role of β antithrombin in regulating coagulation.


1990 ◽  
Vol 10 (9) ◽  
pp. 4456-4465
Author(s):  
S M Carroll ◽  
P Narayan ◽  
F M Rottman

N6-methyladenosine (m6A) residues occur at internal positions in most cellular and viral RNAs; both heterogeneous nuclear RNA and mRNA are involved. This modification arises by enzymatic transfer of a methyl group from S-adenosylmethionine to the central adenosine residue in the canonical sequence G/AAC. Thus far, m6A has been mapped to specific locations in eucaryotic mRNA and viral genomic RNA. We have now examined an intron-specific sequence of a modified bovine prolactin precursor RNA for the presence of this methylated nucleotide by using both transfected-cell systems and a cell-free system capable of methylating mRNA transcripts in vitro. The results indicate the final intron-specific sequence (intron D) of a prolactin RNA molecule does indeed possess m6A residues. When mapped to specific T1 oligonucleotides, the predominant site of methylation was found to be within the consensus sequence AGm6ACU. The level of m6A at this site is nonstoichiometric; approximately 24% of the molecules are modified in vivo. Methylation was detected at markedly reduced levels at other consensus sites within the intron but not in T1 oligonucleotides which do not contain either AAC or GAC consensus sequences. In an attempt to correlate mRNA methylation with processing, stably transfected CHO cells expressing augmented levels of bovine prolactin were treated with neplanocin A, an inhibitor of methylation. Under these conditions, the relative steady-state levels of the intron-containing nuclear precursor increased four to six times that found in control cells.


2019 ◽  
Vol 366 (8) ◽  
Author(s):  
Thomas Jacobsen ◽  
Chunyu Liao ◽  
Chase L Beisel

ABSTRACT The clustered regularly interspaced short palindromic repeat (CRISPR)-associated (Cas) nuclease Acidaminococcus sp. Cas12a (AsCas12a, also known as AsCpf1) has become a popular alternative to Cas9 for genome editing and other applications. AsCas12a has been associated with a TTTV protospacer-adjacent motif (PAM) as part of target recognition. Using a cell-free transcription-translation (TXTL)-based PAM screen, we discovered that AsCas12a can also recognize GTTV and, to a lesser degree, GCTV motifs. Validation experiments involving DNA cleavage in TXTL, plasmid clearance in Escherichia coli, and indel formation in mammalian cells showed that AsCas12a was able to recognize these motifs, with the GTTV motif resulting in higher cleavage efficiency compared to the GCTV motif. We also observed that the -5 position influenced the activity of DNA cleavage in TXTL and in E. coli, with a C at this position resulting in the lowest activity. Together, these results show that wild-type AsCas12a can recognize non-canonical GTTV and GCTV motifs and exemplify why the range of PAMs recognized by Cas nucleases are poorly captured with a consensus sequence.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 454-454
Author(s):  
Yasuaki Shida ◽  
Laura L. Swystun ◽  
Christine Brown ◽  
Jeff Mewburn ◽  
Kate Sponagle ◽  
...  

Background The multimeric glycoprotein von Willebrand factor (VWF) mediates platelet adhesion and aggregation at the site of vessel injury. The adhesive property of VWF is regulated by its multimer length, such that ultra large VWF (ULVWF) multimers, newly released from the endothelium, have greater hemostatic activity. multimer size is regulated by the metalloprotease ADAMTS13, which cleaves the A2 domain to reduce VWF multimer size and functional activity. static conditions, VWF maintains a globular conformation and the ADAMTS13 cleavage site is inaccessible. However, the exposure of endothelial-anchored VWF to tensile forces mediated by platelets and hydrodynamic shear enhance the cleavage of VWF by ADAMTS13. releases VWF of optimal hemostatic length from the endothelium into the plasma. We have previously reported using a flow chamber model which demonstrates that in addition to regulating VWF length and activity at the site of release, ADAMTS13 also associates with VWF at the site of thrombus formation. observed that under conditions of high and very high shear, ADAMTS13 reduced the size of thrombus volume., multi-coloured immunostaining revealed that ADAMTS13 co-localized with VWF and platelets at the top and middle layers of the thrombus, in the presence of very high shear. Aim To better understand the mechanism by which ADAMTS13 regulates thrombus size in our flow chamber model, we assessed the contribution of platelet tensile force to the localization of ADAMTS13 at the site of the thrombus. this model, the contributions of platelet GPIb, GPIIbIIIa, and P-selectin to ADAMTS13 localization were observed. Method Full length mouse VWF and ADAMTS13 cDNA were cloned into pCIneo and pcDNA3.1 plasmid, respectively. The gain of platelet GPIb binding mutation V1316M, and loss of GPIIbIIIa binding mutation (RGD to RGG) were introduced by site-directed-mutagenesis. mCherry was cloned at the C terminus of ADAMTS13 with a 12AA linker. Recombinant mVWF and mADAMTS13-mCherry proteins were produced via HEK293T cells by calcium phosphate transient transfection. mADAMTS13-mCherry (2 U/mL) and wild type or mutant mVWF (4 U/mL) was added to whole blood obtained from VWF-/-/ADAMTS13-/- double knockout mice. Whole blood containing DiOC6-labeled platelets was perfused over a collagen coated flow chamber at very high shear (7500s-1). The role of P-selectin was also analyzed by adding a P-selectin blocking antibody to blood obtained from ADAMTS13-/-knockout mice prior to the flow chamber experiment. After the perfusion, thrombi were fixed and immunostaining was performed to further analyze the distribution of platelets, VWF and ADAMTS13. Result As previously reported, ADAMTS13 localization was observed in the top and middle layers of the thrombus in the presence of wild type mVWF. The GPIb gain-of-function mutation V1316M increased both platelet (126%, p<0.0001) and VWF (190% and p<0.0001) accumulation at the thrombus site. ADAMTS13 localization was also increased (135%, p<0.001) relative to the binding to wild type VWF. Interestingly, with this gain-of-function VWF mutant, ADAMTS13 localization was found throughout the entire thrombus. In contrast, the GPIIbIIIa RGD binding mutant demonstrated decreased VWF (56%, p<0.01), and ADAMTS13 (82%, p<0.05) intensity, although platelet intensity was unaffected. to wild type, ADAMTS13 localized to the middle and top layers of the thrombus. Finally, inhibition of P-selectin significantly decreased VWF (46%, p<0.01) and ADAMTS13 (34%, p<0.01) localization to the thrombus, but again did not significantly alter platelet binding. Conclusion These studies demonstrate the central role of platelet-mediated mechanical tensile force on the regulation of thrombus growth at the site of platelet accumulation. Enhanced tensile force induced by increased GPIb binding resulted in increased ADAMTS13 localization, while reduced tensile force through loss of GPIIbIIIa or P-selectin binding decreased ADAMTS13 localization. This suggests that ADAMTS13 activity at the site of thrombus formation is maintained by the combination of hydrodynamic shear force and platelet tethering. aggregate, these studies suggest that under conditions of shear, ADAMTS13 regulates thrombus size by preserving the hemostatic function of the thrombus, and preventing dysregulated thrombus growth. Disclosures: No relevant conflicts of interest to declare.


2012 ◽  
Vol 197 (7) ◽  
pp. 887-895 ◽  
Author(s):  
Ivo A. Telley ◽  
Imre Gáspár ◽  
Anne Ephrussi ◽  
Thomas Surrey

In the early embryo of many species, comparatively small spindles are positioned near the cell center for subsequent cytokinesis. In most insects, however, rapid nuclear divisions occur in the absence of cytokinesis, and nuclei distribute rapidly throughout the large syncytial embryo. Even distribution and anchoring of nuclei at the embryo cortex are crucial for cellularization of the blastoderm embryo. The principles underlying nuclear dispersal in a syncytium are unclear. We established a cell-free system from individual Drosophila melanogaster embryos that supports successive nuclear division cycles with native characteristics. This allowed us to investigate nuclear separation in predefined volumes. Encapsulating nuclei in microchambers revealed that the early cytoplasm is programmed to separate nuclei a distinct distance. Laser microsurgery revealed an important role of microtubule aster migration through cytoplasmic space, which depended on F-actin and cooperated with anaphase spindle elongation. These activities define a characteristic separation length scale that appears to be a conserved property of developing insect embryos.


2009 ◽  
Vol 29 (13) ◽  
pp. 3582-3596 ◽  
Author(s):  
Zhonglin Xie ◽  
Yunzhou Dong ◽  
Junhua Zhang ◽  
Roland Scholz ◽  
Dietbert Neumann ◽  
...  

ABSTRACT LKB1, a master kinase that controls at least 13 downstream protein kinases including the AMP-activated protein kinase (AMPK), resides mainly in the nucleus. A key step in LKB1 activation is its export from the nucleus to the cytoplasm. Here, we identified S307 of LKB1 as a putative novel phosphorylation site which is essential for its nucleocytoplasmic transport. In a cell-free system, recombinant PKC-ζ phosphorylates LKB1 at S307. AMPK-activating agents stimulate PKC-ζ activity and LKB1 phosphorylation at S307 in endothelial cells, hepatocytes, skeletal muscle cells, and vascular smooth muscle cells. Like the kinase-dead LKB1 D194A mutant (mutation of Asp194 to Ala), the constitutively nucleus-localized LKB1 SL26 mutant and the LKB1 S307A mutant (Ser307 to Ala) exhibit a decreased association with STRADα. Interestingly, the PKC-ζ consensus sequence surrounding LKB1 S307 is disrupted in the LKB1 SL26 mutant, thus providing a likely molecular explanation for this mutation causing LKB1 dysfunction. In addition, LKB1 nucleocytoplasmic transport and AMPK activation in response to peroxynitrite are markedly reduced by pharmacological inhibition of CRM1, which normally facilitates nuclear export of LKB1-STRAD complexes. In comparison to the LKB1 wild type, the S307A mutant complexes show reduced association with CRM1. Finally, adenoviral overexpression of wild-type LKB1 suppresses, while the LKB1 S307A mutant increases, tube formation and hydrogen peroxide-enhanced apoptosis in cultured endothelial cells. Taken together, our results suggest that, in multiple cell types the signaling pathways engaged by several physiological stimuli converge upon PKC-ζ-dependent LKB1 phosphorylation at S307, which directs the nucleocytoplasmic transport of LKB1 and consequent AMPK activation.


2009 ◽  
Vol 77 (10) ◽  
pp. 4371-4382 ◽  
Author(s):  
Javier A. Carrero ◽  
Boris Calderon ◽  
Hector Vivanco-Cid ◽  
Emil R. Unanue

ABSTRACT Listeriolysin O (LLO) is an essential virulence factor for the gram-positive bacterium Listeria monocytogenes. Our goal was to determine if altering the topology of LLO would alter the virulence and toxicity of L. monocytogenes in vivo. A recombinant strain was generated that expressed a surface-associated LLO (sLLO) variant secreted at 40-fold-lower levels than the wild type. In culture, the sLLO strain grew in macrophages, translocated to the cytosol, and induced cell death. However, the sLLO strain showed decreased infectivity, reduced lymphocyte apoptosis, and decreased virulence despite a normal in vitro phenotype. Thus, the topology of LLO in L. monocytogenes was a factor in the pathogenesis of the infection and points to a role of LLO secretion during in vivo infection. The sLLO strain was cleared by severe combined immunodeficient (SCID) mice. Despite the attenuation of virulence, the sLLO strain was immunogenic and capable of eliciting protective T-cell responses.


1990 ◽  
Vol 10 (9) ◽  
pp. 4456-4465 ◽  
Author(s):  
S M Carroll ◽  
P Narayan ◽  
F M Rottman

N6-methyladenosine (m6A) residues occur at internal positions in most cellular and viral RNAs; both heterogeneous nuclear RNA and mRNA are involved. This modification arises by enzymatic transfer of a methyl group from S-adenosylmethionine to the central adenosine residue in the canonical sequence G/AAC. Thus far, m6A has been mapped to specific locations in eucaryotic mRNA and viral genomic RNA. We have now examined an intron-specific sequence of a modified bovine prolactin precursor RNA for the presence of this methylated nucleotide by using both transfected-cell systems and a cell-free system capable of methylating mRNA transcripts in vitro. The results indicate the final intron-specific sequence (intron D) of a prolactin RNA molecule does indeed possess m6A residues. When mapped to specific T1 oligonucleotides, the predominant site of methylation was found to be within the consensus sequence AGm6ACU. The level of m6A at this site is nonstoichiometric; approximately 24% of the molecules are modified in vivo. Methylation was detected at markedly reduced levels at other consensus sites within the intron but not in T1 oligonucleotides which do not contain either AAC or GAC consensus sequences. In an attempt to correlate mRNA methylation with processing, stably transfected CHO cells expressing augmented levels of bovine prolactin were treated with neplanocin A, an inhibitor of methylation. Under these conditions, the relative steady-state levels of the intron-containing nuclear precursor increased four to six times that found in control cells.


2021 ◽  
Author(s):  
Yukihiko Kubota ◽  
Natsumi Ota ◽  
Hisashi Takatsuka ◽  
Takuma Unno ◽  
Shuichi Onami ◽  
...  

The RNA polymerase II-associated factor 1 complex (PAF1C) is a protein complex that consists of LEO1, RTF1, PAF1, CDC73, and CTR9, and has been shown to be involved in Pol II-mediated transcriptional and chromatin regulation. Although it has been shown to regulate a variety of biological processes, the precise role of the PAF1C during germ line development has not been clarified. In this study, we found that reduction in the function of the PAF1C components, LEO-1, RTFO-1, PAFO-1, CDC-73, and CTR-9, in Caenorhabditis elegans affects cell volume expansion of oocytes. Defects in oogenesis were also confirmed using an oocyte maturation marker, OMA-1::GFP. While four to five OMA-1::GFP-positive oocytes were observed in wild-type animals, their numbers were significantly decreased in pafo-1 mutantand leo-1(RNAi), cdc-73(RNAi), and pafo-1(RNAi) animals. Expression of a functional PAFO-1::mCherry transgene in the germline significantly rescued the oogenesis-defective phenotype of the pafo-1 mutants, suggesting that expression of the PAF1C in germ cells is required for oogenesis. Notably, overexpression of OMA-1::GFP partially rescued the oogenesis defect in the pafo-1 mutants. Based on our findings, we propose that the PAF1C promotes oogenesis in a cell-autonomous manner by positively regulating the expression of genes involved in oocyte maturation.


Sign in / Sign up

Export Citation Format

Share Document