scholarly journals A Supersensitive Method for Spectroscopic Diagnostics of Electrostatic Waves in Magnetized Plasmas

Plasma ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 780-788
Author(s):  
Eugene Oks ◽  
Elisabeth Dalimier ◽  
Paulo Angelo

For relatively strong magnetic fields, hydrogen atoms can have delocalized bound states of almost macroscopic dimensions. Therefore, such states are characterized by a Giant Electric Dipole Moment (GEDM), thus making them very sensitive to an external electric field. We considered the manifestations of the GEDM states in hydrogen spectral line profiles in the presence of a quasimonochromatic electrostatic wave of a frequency ω in a plasma. We demonstrated that in this situation, hydrogen spectral lines can exhibit quasi-satellites, which are the envelopes of Blochinzew-type satellites. We showed that the distinctive feature of such quasi-satellites is that their peak intensity is located at the same distance from the line center (in the frequency scale) for all hydrogen spectral lines, the distance being significantly greater than the wave frequency ω. At the absence of the GEDM (and for relatively strong electrostatic waves), the maxima of the satellite envelopes would be at different distances from the line center for different hydrogen lines. We demonstrated that this effect would constitute a supersensitive diagnostic method for measuring the amplitude of electrostatic waves in plasmas down to ~10 V/cm or even lower.

Atoms ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 50 ◽  
Author(s):  
Eugene Oks

There is presented an overview of the latest advances in the analytical theory of Stark broadening of hydrogenic spectral lines in various types of laboratory and astrophysical plasmas. They include: (1) advanced analytical treatment of the Stark broadening of hydrogenic spectral lines by plasma electrons; (2) center-of-mass effects for hydrogen atoms in a nonuniform electric field: applications to magnetic fusion, radiofrequency discharges, and flare stars; (3) penetrating-ions-caused shift of hydrogenic spectral lines in plasmas; (4) improvement of the method for measuring the electron density based on the asymmetry of hydrogenic spectral lines in dense plasmas; (5) Lorentz–Doppler broadening of hydrogen/deuterium spectral lines: analytical solution for any angle of observation and any magnetic field strength, and its applications to magnetic fusion and solar physics; (6) Revision of the Inglis-Teller diagnostic method; (7) Stark broadening of hydrogen/deuterium spectral lines by a relativistic electron beam: analytical results and applications to magnetic fusion; (8) Influence of magnetic-field-caused modifications of the trajectories of plasma electrons on shifts and relative intensities of Zeeman components of hydrogen/deuterium spectral lines: applications to magnetic fusion and white dwarfs; (9) Influence of magnetic-field-caused modifications of trajectories of plasma electrons on the width of hydrogen/deuterium spectral lines: applications to white dwarfs; (10) Stark broadening of hydrogen lines in plasmas of electron densities up to or more than Ne~1020 cm−3; and, (11) The shape of spectral lines of two-electron Rydberg atoms/ions: a peculiar Stark broadening.


Atoms ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 25 ◽  
Author(s):  
Eugene Oks

The development of various spectroscopic diagnostics of relatively weak Langmuir waves in plasmas and their successful implementation have a history of over 50 years. As for spectroscopic diagnostics of Langmuir solitons (i.e., relatively strong Langmuir waves) in plasmas, there have only been very few theoretical papers. The most promising result so far was based on using satellites of the dipole-forbidden spectral lines of He, Li, or He-like and Li-like ions. It was shown that, in the case of Langmuir solitons, the peak intensity of the satellites of the dipole-forbidden lines can be significantly enhanced—by orders of magnitude—compared to the case of non-solitonic Langmuir waves. This distinctive feature of satellites under Langmuir solitons allows them to be distinguished from non-solitonic Langmuir waves. In the present paper, we perform a general study of the effects of Langmuir solitons on arbitrary spectral lines of hydrogen or hydrogen-like ions. Then, using the Ly-beta line as an example, we compare the main features of the profiles for the case of the Langmuir solitons with the case of the non-solitonic Langmuir waves of the same amplitude. We also show how the line profiles depend on the amplitude of the Langmuir solitons and on their separation from each other within the sequence of the solitons.


1977 ◽  
Vol 36 ◽  
pp. 191-215
Author(s):  
G.B. Rybicki

Observations of the shapes and intensities of spectral lines provide a bounty of information about the outer layers of the sun. In order to utilize this information, however, one is faced with a seemingly monumental task. The sun’s chromosphere and corona are extremely complex, and the underlying physical phenomena are far from being understood. Velocity fields, magnetic fields, Inhomogeneous structure, hydromagnetic phenomena – these are some of the complications that must be faced. Other uncertainties involve the atomic physics upon which all of the deductions depend.


2019 ◽  
Vol 15 (S356) ◽  
pp. 94-94
Author(s):  
Marco Berton

AbstractLine profiles can provide fundamental information on the physics of active galactic nuclei (AGN). In the case of narrow-line Seyfert 1 galaxies (NLS1s) this is of particular importance since past studies revealed how their permitted line profiles are well reproduced by a Lorentzian function instead of a Gaussian. This has been explained with different properties of the broad-line region (BLR), which may present more pronounced turbulent motions in NLS1s with respect to other AGN. We investigated the line profiles in a recent large NLS1 sample classified using SDSS, and we divided the sources into two subsamples according to their line shapes, Gaussian or Lorentzian. The line profiles seem to separate all the properties of NLS1s. Black hole mass, Eddington ratio, [OIII] luminosity, and Fe II strength are all very different in the Lorentzian and Gaussian samples, as well as their position on the quasar main sequence. We interpret this in terms of evolution within the class of NLS1s. The Lorentzian sources may be the youngest objects, while Gaussian profiles may be typically associated to more evolved objects. Further detailed spectroscopic studies are needed to fully confirm our hypothesis.


1989 ◽  
Vol 114 ◽  
pp. 296-299
Author(s):  
J. L. Provencal ◽  
J. C. Clemens ◽  
G. Henry ◽  
B. P. Hine ◽  
R. E. Nather ◽  
...  

White dwarf stars provide important boundary conditions for the understanding of stellar evolution. An adequate understanding of even these simple stars is impossible without detailed knowledge of their interiors. PG1346+082, an interacting binary white dwarf system, provides a unique opportunity to view the interior of one degenerate as it is brought to light in the accretion disk of the second star as the primary strips material from its less massive companion (see Wood et at. 1987).PG1346+082 is a photometric variable with a four magnitude variation over a four to five day quasi-period. A fast Fourier transform (FFT) of the light curve shows a complex, time-dependent structure of harmonics. PG1346+082 exhibits flickering – the signature of mass transfer. The optical spectra of the system contain weak emission features during minimum and broad absorption at all other times. This could be attributed to pressure broadening in the atmosphere of a compact object, or to a combination of pressure broadening and doppler broadening in a disk surrounding the compact accretor. No hydrogen lines are observed and the spectra are dominated by neutral helium. The spectra also display variable asymmetric line profiles.


Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 322
Author(s):  
Zhengxiong Su ◽  
Sheng Wang ◽  
Chenyang Lu ◽  
Qing Peng

Hydrogen plays a significant role in the microstructure evolution and macroscopic deformation of materials, causing swelling and surface blistering to reduce service life. In the present work, the atomistic mechanisms of hydrogen bubble nucleation in vanadium were studied by first-principles calculations. The interstitial hydrogen atoms cannot form significant bound states with other hydrogen atoms in bulk vanadium, which explains the absence of hydrogen self-clustering from the experiments. To find the possible origin of hydrogen bubble in vanadium, we explored the minimum sizes of a vacancy cluster in vanadium for the formation of hydrogen molecule. We show that a freestanding hydrogen molecule can form and remain relatively stable in the center of a 54-hydrogen atom saturated 27-vacancy cluster.


2004 ◽  
Vol 219 ◽  
pp. 171-175
Author(s):  
C. Fang ◽  
Z. Xu ◽  
M. D. Ding

Particle beam bombardment on the solar chromosphere produces non-thermal ionization and excitation. The effect on hydrogen lines is investigated by using non-LTE theory and semi-empirical flare models. It has been found that in the case of electron bombardment, the Hα line is widely broadened and enhanced. Significant enhancements at the wings of Lyα and Lyβ lines are also predicted. In the case of proton bombardment, less strong broadening and less central reversal are expected. We found that the total energy flux of the particle beam and the atmospheric condition give much influence on the line profiles, which, however, are less sensitive to the power index. Based on the Hα line profile measurement, a method to deduce the total energy flux of the particle beam is proposed.


1964 ◽  
Vol 20 ◽  
pp. 131-134 ◽  
Author(s):  
B. F. Burke ◽  
K. C. Turner ◽  
M. A. Tuve

The 300-foot transit telescope at the N.R.A.O. at Green Bank, West Virginia, was used in conjunction with the Carnegie 90-channel H-line spectrograph to study the far parts of the Galaxy between l = 11° and l = 50° (lII and bII are to be understood throughout). A travelling feed was constructed at the Carnegie Institution which enabled us to track one point in the sky for approximately 5m40s. This made it possible to make two completely independent frequency scans of a given point each day. On successive days, duplicate curves were taken with the frequency scale shifted, in order to guard against single channel anomalies and pointing error. Line profiles were taken at 160 points in the region under study, in meridional sections every 5° of l, from b = −0°8 to +2°0 in steps of 0°. In addition, a single longitudinal section was taken at b = +0°4 in steps of 1°.


1980 ◽  
Vol 51 ◽  
pp. 213-224
Author(s):  
Åke Nordlund

AbstractThe results of numerical simulations of the solar granulation are used to investigate the effects on photospheric apectral lines of the correlated velocity and temperature fluctuations of the convective granular motions. It is verified that the granular velocity field is the main cause for the observed broadening and strengthening of photospheric spectral lines relative to values expected from pure thermal and pressure broadening. These effects are normally referred to as being due to “macro-turbulence” and “micro-turbulence”, respectively. It is also shown that the correlated temperature and velocity fluctuations produce a “convective blue shift” in agreement with the observed blue shift of photospheric spectral lines. Reasons are given for the characteristic shapes of spectral line bisectors, and the dependence of these shapes on line strength, excitation potential, and center to limb distance are discussed.


Sign in / Sign up

Export Citation Format

Share Document