scholarly journals A New Strategy for the Synthesis of Hydroxyl Terminated Polystyrene-b-Polybutadiene-b-Polystyrene Triblock Copolymer with High Cis-1, 4 Content

Polymers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 598 ◽  
Author(s):  
Xin Min ◽  
Xiaodong Fan

This work reports the preparation of a hydroxyl terminated polystyrene-b-polybutadiene-b-polystyrene triblock copolymer (SBS) with high cis-1, 4 content via a novel nickel catalyst, [η3-Ni(CH2CHCHCH2OOCH3)][BPhF4]. FT-IR, 1H-NMR, and 13C NMR indicated that the polybutadiene segment of the copolymer contains greater than 90% cis-1, 4 structure, indicating achievement of the objective. Toward the functionalization goal, a hydroxyl group was successfully introduced at the end of the triblock copolymer (HO–SBS–OH). The results of gel permeation chromatography (GPC) revealed that the polymer is indeed a triblock copolymer, with no traces of homopolymer. Differential scanning calorimetry (DSC) showed that HO–SBS–OH synthesized using the novel catalyst had a lower glass transition temperature (Tg) than HO–SBS–OH synthesized with an alkyl lithium catalyst. Therefore, the polymer synthesized via the novel catalyst contains high cis-1,4 content and displays excellent low-temperature mechanical properties.

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 285
Author(s):  
Yulia S. Dyuzhikova ◽  
Anton A. Anisimov ◽  
Alexander S. Peregudov ◽  
Mikhail I. Buzin ◽  
Galina G. Nikiforova ◽  
...  

New non-crystallizable low-dispersity star-shaped polydimethylsiloxanes (PDMS) containing stereoregular cis-tetra(organo)(dimethylsiloxy)cyclotetrasiloxanes containing methyl-, tolyl- and phenyl-substituents at silicon atoms and the mixture of four stereoisomers of tetra[phenyl(dimethylsiloxy)]cyclotetrasiloxane as the cores were synthesized. Their thermal and viscous properties were studied. All synthesized compounds were characterized by a complex of physicochemical analysis methods: nuclear magnetic resonance (NMR), FT-IR spectroscopy, gel permeation chromatography (GPC), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), viscometry in solution, rheometry, and Langmuir trough study.


2011 ◽  
Vol 31 (2-3) ◽  
Author(s):  
Sakvai Mohammed Safiullah ◽  
Deivasigamani Thirumoolan ◽  
Kottur Anver Basha ◽  
K. Mani Govindaraju ◽  
Dhanraj Gopi ◽  
...  

Abstract The synthesis of copolymers from different feed ratios of N-(p-bromophenyl)-2- methacrylamide (PBPMA) and glycidyl methacrylate (GMA) was achieved by using free radical solution polymerization technique and characterized using FT-IR, 1H and 13C NMR spectroscopy. The thermal stability of the synthesized copolymers was studied using thermo-gravimetric analysis (TGA) and differential scanning calorimetry (DSC). The molecular weight of the copolymer is determined by gel permeation chromatography (GPC). The corrosion performances of low nickel stainless steel specimens dip coated with different composition of copolymers were investigated in 0.5 M H2SO4 using potentiodynamic polarization and electrochemical impedance spectroscopic (EIS) techniques. The polarization and impedance measurements showed different corrosion protection efficiency with change in composition of the copolymers. It was found that the corrosion protection properties are owing to the barrier effect of the polymer layer covered on the low nickel stainless steel surfaces. However, it is observed that the mole ratio of PBPMA and GMA plays a major role in the protective nature of the copolymer.


1985 ◽  
Vol 39 (6) ◽  
pp. 909-915 ◽  
Author(s):  
D. A. C. Compton ◽  
M. Markelov ◽  
M. L. Mittleman ◽  
J. G. Grasselli

Infrared analysis is well established as a prime method for identification of unknown samples. However, the instruments needed for recording a complete infrared spectrum have not lent themselves to mobile applications because of their inherent mechanical fragility. The design of a commercial low-cost FT-IR instrument described herein makes it particularly useful as a mobile analyzer since it is optically rugged and has sufficient on-board computer power to record high-quality spectra after being moved between locations. At the same time, it is physically small enough to be mounted on a standard lab cart along with the necessary accessories. We illustrate the use of this mobile, low-cost FT-IR for analyzing the evolved gases from Thermal Gravimetric Analysis, small pilot reactors, and the liquid eluant from Gel Permeation Chromatography.


2014 ◽  
Vol 34 (7) ◽  
pp. 583-589 ◽  
Author(s):  
Ai-Yuan Li ◽  
Xiang-Dong Sun ◽  
Hui-Bo Zhang ◽  
Yong-Chun Zhang ◽  
Bin Wang ◽  
...  

Abstract The cationic copolymerization of 1,3-pentadiene (PD) with α-pinene (AP) initiated by aluminum trichloride (AlCl3) was carried out in N-pentane solvent. The effects of the polymerization temperature and the comonomer composition on the yield of the copolymer, softening point, Gardner color scale and number-average molecular weight (Mn) are discussed. The performance of the copolymer was better than that of AP homopolymer (PAP) and PD homopolymer (PPD). The structure of the copolymer was characterized by Fourier transform infrared spectroscopy (FT-IR), 1H-nuclear magnetic resonance (1H-NMR), 13C-NMR, differential scanning calorimetry (DSC) and gel permeation chromatography (GPC). In addition, the reactivity ratios for AP (M1) and PD (M2) determined by the Kelen-Tudos method from low-conversion data are r1=0.58 and r2=5.92, respectively.


Holzforschung ◽  
2015 ◽  
Vol 69 (8) ◽  
pp. 943-950 ◽  
Author(s):  
Wenwen Fang ◽  
Marina Alekhina ◽  
Olga Ershova ◽  
Sami Heikkinen ◽  
Herbert Sixta

Abstract To upgrade the utilization of kraft lignin (KL) for high-performance lignin-based materials (e.g., carbon fiber), the purity, molecular mass distribution (MMD), and thermal properties need to be improved and adjusted to target values. Therefore, different methods, such as ultrasonic extraction (UE), solvent extraction, dialysis, and hot water treatment (HWT), were applied for the purification of KL. The chemical and thermal properties of purified lignin have been characterized by nuclear magnetic resonance, Fourier transform infrared, gel permeation chromatography, elemental analysis, differential scanning calorimetry, and thermogravimetric analysis. The lignin fractions obtained by UE with ethanol/acetone (E/A) mixture (9:1) revealed a very narrow MMD and were nearly free of inorganic compounds and carbohydrates. Further, the E/A-extracted lignin showed a lower glass transition temperature (Tg) and a clearly detectable melting temperature (Tm). Dialysis followed by HWT at 220°C is an efficient method for the removal of inorganics and carbohydrates; however, lignin was partly forming condensed structures during the treatment.


Author(s):  
Juan Villavicencio ◽  
Ferley Orozco ◽  
Ricardo Benitez ◽  
Jaime Martin ◽  
Giovanni Rojas

Polyesters of xylitol and succinic acid were prepared yielding from 70 to 75% by enzymecatalyzed esterification using a molar mass from 1:1 to 2:5 at 120 and 140 °C employing from 1 to 10% m/m of enzyme. Control over branching degree was achieved by tuning the reaction conditions (temperature, time, comonomer ratio, enzyme content). This one-step process from renewable starting materials avoids protection-deprotection techniques, as well as the use of toxic solvents by introducing limonene as solvent for polyesterification for the first time. All materials were structurally characterized by infrared (IR) and nuclear magnetic resonance (NMR)spectroscopy, their thermal properties were studied by differential scanning calorimetry (DSC)and thermogravimetric analysis (TGA), and the molecular weight of samples were obtained by gel-permeation chromatography (GPC).


Author(s):  
Hodhaifa Derdar ◽  
Mohammed Belbachir ◽  
Amine Harrane

A new green polymerization technique to synthesis polylimonene (PLM) is carried out in this work. This technique consists of using Maghnite-H+ as eco-catalyst to replace Friedel-Crafts catalysts which are toxics. Maghnite-H+ is a montmorillonite silicate sheet clay which is prepared through a simple exchange process. Polymerization experiments are performed in bulk and in solution using CH2Cl2 as solvent. Effect of reaction time, temperature and amount of catalyst is studied, in order to find the optimal reaction conditions. The polymerization in solution leads to the best yield (48.5%) at -5°C for a reaction time of 6 h but the bulk polymerization, that is performed at 25°C, remains preferred even if the yield is lower (40.3%) in order to respect the principles of a green chemistry which recommend syntheses under mild conditions, without solvents and at room temperature. The structure of the obtained polymer (PLM) is confirmed by FT-IR and Nuclear Magnetic Resonance of proton (1H-NMR). The glass transition temperature (Tg) of the polylimonene is defined using Differential Scanning Calorimetry (DSC) and is between 113°C and 116°C. The molecular weight of the obtained polymer is determined by Gel Permeation Chromatography (GPC) analysis and is about 1360 g/mol. Copyright © 2019 BCREC Group. All rights reservedReceived: 26th May 2018; Revised: 11st September 2018; Accepted: 22nd September 2018; Available online: 25th January 2019; Published regularly: April 2019How to Cite: Derdar, H., Belbachir, M., Harrane, A. (2019). A Green Synthesis of Polylimonene Using Maghnite-H+, an Exchanged Montmorillonite Clay, as Eco-Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 14 (1): 69-78 (doi:10.9767/bcrec.14.1.2692.69-78)Permalink/DOI: https://doi.org/10.9767/bcrec.14.1.2692.69-78 


KIMIKA ◽  
2017 ◽  
Vol 28 (1) ◽  
pp. 20-25
Author(s):  
Florentino C. Sumera ◽  
Shienna Marie A. Pontillas ◽  
Josanelle Angela V. Bilo ◽  
John Marty Mateo

A liquid, biocompatible polyester based polymer, which could facilitate injectable formulations by simple mixing with the active substance (drug) is much needed by the pharmaceutical companies. A favourite candidate is polylactic acid (PLA) which is biocompatible and biodegradable. However PLA is solid with high crystallinity. Thus, in this research, hydroxylauric acid (HOLA) was copolymerized with lactic acid (LA) in different ratios by polycondensation technique at 180 °C, without a metal catalyst and avoiding the formation of interfering lactides, to provide a liquid polyester. The copolymers molecular weights were determined by Gel Permeation Chromatography (GPC) and their physical states indicated as solid or liquid were noted. The structures as polyesters were confirmed by FT-IR and 1H NMR spectroscopy. Poly(HOLA:LA)  products from reactant ratios 0:100 is solid, while ratios of 20:80, 40:60 are mixed (paste) and 60:40, 80:20 and 100:0 are liquids. Thus, the liquid polyesters from the polycondensation of HOLA and LA without catalyst  were picked as potential candidates for dissolving hydrophobic drugs that could be used as injectables in controlled drug delivery experiments.


2013 ◽  
Vol 17 (06n07) ◽  
pp. 573-586 ◽  
Author(s):  
Çiğdem Yağcı ◽  
Ahmet Bilgin

A phthalonitrile precursor 4-(3-hydroxypropylmercapto)phthalonitrile (3) was synthesized via a base-catalyzed nucleophilic aromatic nitro displacement of 4-nitrophthalonitrile with the 3-mercapto-1-propanol. A novel tetrasubstituted metal-free phthalocyanine (4) ( M = 2 H ) and its metal complexes (5–8) ( M = Zn , Ni , Cu and Co ) bearing 3-hydroxypropylmercapto moieties were prepared by the cyclotetramerization reaction of (3) with the appropriate materials. The visible spectra of the zinc(II) phthalocyanine (5) was recorded with different concentrations and different ions as Ag +, Hg 2+ and Pb 2+ in DMF and also with different solvents as dimethylformamide and pyridine. Fluorescence spectrum of the compound (5) was also studied. Temperature and frequency dependence of AC conductivity for (4–8) was investigated in air and under vacuum and were found to be ~10-8–10-5 S.m-1. Thermal properties of the phthalocyanines were examined by differential scanning calorimetry. All the novel compounds have been characterized by elemental analysis, UV-vis, FT-IR, NMR and MS spectral data and DSC techniques.


Sign in / Sign up

Export Citation Format

Share Document