scholarly journals Rheological Model and Transition Velocity Equation of a Polymer Solution in a Partial Pressure Tool

Polymers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 855 ◽  
Author(s):  
Bin Huang ◽  
Xinyu Hu ◽  
Cheng Fu ◽  
Chongjiang Liu ◽  
Ying Wang ◽  
...  

In order to solve the problem of the low production degree of oil layers caused by an excessively large permeability difference between layers during polymer flooding, we propose partial pressure injection technology using a partial pressure tool. The partial pressure tool controls the injection pressure of a polymer solution through a throttling effect to improve the oil displacement effect in high- and low-permeability reservoirs. In order to analyze the influence of the partial pressure tool on the rheological property of the polymer solution, a physical model of the tool is established, the rheological equation of the polymer solution in the partial pressure tool is established according to force balance analysis, the transition velocity equation for the polymer solution is established based on the concept of stability factor, and the influence of varying the structural parameters of the partial pressure tool on the rheological property of the polymer solution is analyzed. The results show that the pressure drop of the polymer solution increases with the decrease of the front groove angle of the partial pressure tool (from 60° to 30°), reaching a maximum of 1.77 MPa at a front groove angle of 30°. Additionally, the pressure drop of the polymer solution increases with the decrease of the outer cylinder radius (from 25 to 24 mm), reaching a maximum of 1.32 MPa at a radius of 24 mm. However, the apparent viscosity of the polymer solution before and after flowing through the partial pressure tool does not change for any of the studied parameters. These research results are of great significance to research on partial pressure injection technology and enhanced oil recovery.

Author(s):  
Xiaochuan Li ◽  
Tao Wei ◽  
Xinhao Xu ◽  
Reyna M Knight ◽  
Jiahang Li

The complexity of the gas-liquid two-phase flow results in equally complicated pressure drop characteristics for self-excited wet dust scrubbers. In this paper, the pressure drop of the dust scrubber was studied by measuring the total pressure drop R and the differential liquid level Δ H versus the gas velocity v at different initial liquid level b0 values, combined with the liquid flowability. The results showed that the dust scrubber varied its total drag coefficient by changing the differential liquid level Δ H of the liquid-phase and then adjusting the gas-liquid two-phase force balance ahead of and behind the choke. Under the influence of liquid flowability, the throttling strength α exhibited a linear relationship with the gas velocity of the dust scrubber when b0 ≤ 0 mm. The Δ H-v and R- v characteristics of the dust scrubber varied with different values of b0 and v. When b0 > 0, the Δ H-v curve and R- v curve exhibited an explicit quadratic curve relationship. When b0 ≤ 0 mm, the Δ H-v curve and R- v curve exhibited an explicit linear relationship, where the Δ H-v curves can be expressed by a linear equation Δ H = khv+Δ H0, and the gas-phase pressure drop R can be approximately calculated using the differential liquid level Δ H. The liquid flowability can change the choke-sectional to change the total drag coefficient, which reduced in multiple folds with an increase in the gas velocity.


Author(s):  
Dong Rip Kim ◽  
Jae-Mo Koo ◽  
Chen Fang ◽  
Julie E. Steinbrenner ◽  
Eon Soo Lee ◽  
...  

This paper presents a theoretical investigation of the movement of liquid droplets and slugs in hydrophobic microchannels and develops a compact model for this type of two-phase flow. This model is used in the prediction of pressure drop and liquid water coverage ratio, key parameters in the operation of Proton Exchange Membrane Fuel Cells (PEMFC), the primary motivation for this work. A semi-empirical, periodic-steady two-phase separated flow compact model is formulated to characterize the slug flow behavior. The momentum equation includes the effects of acceleration, friction and surface tension on the pressure drop. The model considers spatial changes in slug velocity through the use of a force balance formulation. The model uses a departure scheme that computes slug size and shape at entrainment. The steady state slug flow compact model is capable of predicting liquid water coverage ratio and pressure drop using liquid and gas flow rates and advancing/receding triple point contact angles as its only inputs. The results indicate that the pressure drop increases as the droplet formation frequency increases.


ACS Omega ◽  
2020 ◽  
Vol 5 (12) ◽  
pp. 7002-7010
Author(s):  
Bin Huang ◽  
Xinyu Hu ◽  
Cheng Fu ◽  
Weisen Zhang ◽  
Li Wang

2019 ◽  
Vol 23 (5) ◽  
Author(s):  
Xiaohan Yang ◽  
Netsanet Tesfaye Weldetsadik ◽  
Zafar Hayat ◽  
Taotao Fu ◽  
Shaokun Jiang ◽  
...  

1981 ◽  
Vol 21 (06) ◽  
pp. 663-669 ◽  
Author(s):  
Thomas R. Sifferman ◽  
Robert A. Greenkorn

Abstract Drag reduction was observed in three distinctly different flow systems-dilute polymer solutions, two-phase solid/liquid suspensions, and three-phase immiscible liquid/liquid flow with suspended solids - in relatively large-diameter pipes (0.027, 0.038, and 0.053 m). Galvanized pipes presented a rough wall, while glass provided a smooth wall and allowed for flow visualization. provided a smooth wall and allowed for flow visualization. By drag reduction, we mean that, for the same flow rate, there is less pressure drop per length of pipe than for the base fluid flowing, alone.Three polymers-sodium carboxymethylcellulose (CMC). polyethylene oxide (POLYOX(TM)), and guar gum) (Jaguar(TM)) were mixed with water to form solutions of various concentrations (from 0.001 to 0.3 wt%). Two nominal concentrations (5 to 10%) of silca sand also were suspended with either tap water or some of the polymers. Finally, white mineral oil and either tap water or polymer solutions were tested. Sand also was added to the oil system.Drag reductions of up to almost 80% were obtained for both the polymer systems and the oil system. Sand suspensions had a maximum of about 35% drag reduction in tap water. However, greatest reductions (more than 90% were attained with the polymer/sand suspensionsSince the sand in the polymer solutions reduced the drag even more than the polymers alone, it may be that the drag mechanism is additive and even may be the same type for both polymers and suspensions.Drag reduction occurs in the region near the wall and could occur in an intermediate layer zone that allows an effective slip velocity to result. Polymers showed significant deviation from the Newtonian velocity profiles.Less power was required to pump the polymers than water alone. Viscosity and normal stress data were obtained also. Introduction There are many interesting engineering applications of drag-reduction phenomena. For many flow situations in conduits, the use of a drag reduction agent (normally a viscoelastic soluble polymer) increases flow rate for the same pressure drop in diverse systems. Such as storm sewers, drilling operations, fire fighting, irrigation and living systems. External flows can be improved around ships and torpedoes. Proper design of solid/fluid systems to take advantage of the drag reduction associated with suspended solids can be used in transporting coal, raw sewage, and sediment. In two-phase liquid/liquid situations, such as hydraulic fracturing of oil wells and transportation of liquid petroleum. drag reduction associated with annular immiscible or emulsion flow can be used to advantage where exceptionally large reductions in pressure for a given flow rate result for viscous oils and water.To design systems to take advantage of lower energy requirements at the same flow rate, data are necessary (1) from systems large enough that diameter effects are absent, (2) at flow rates of sufficient velocity that the phenomena are present, and (3) on different systems phenomena are present, and (3) on different systems with varying physical properties. Such data re necessary to develop correlations, to understand flow mechanisms, and to develop mathematical models-all of which are necessary to interpolate and extrapolate the data for design of such flow systems. Previously, this type of data has not been available.Drag reductions is defined, at a given flow rate, as the pressure drop for a given system minus the pressure drop pressure drop for a given system minus the pressure drop for the base fluid divided by the pressure drop for the base fluid.In this paper, we report observations of drag-reduction phenomena in three distinctly different flow systems: (1) phenomena in three distinctly different flow systems:single-phase water, oil, and dilute polymer-water solutions;two-phase oil/water, oil/polymer solution, water/sand, and polymer solution/sand; andthree-phase oil/water/sand and oil/polymer solution/sand. The data were collected in 0.027- and 0.053-m Schedule 40 galvanized pipe and a 0.038-m-ID smooth-wall glass pipe. pipe. SPEJ P. 663


2013 ◽  
Vol 807-809 ◽  
pp. 2523-2528
Author(s):  
Yu Fei Jia ◽  
Miao Xu ◽  
Xiao Xiao Liu

Polyacrylamide (polymer) solution which has different relative molecular mass and mass concentration in porous media has been studied in seepage flow experiment. Due to differences in pressure drop at different seepage velocities, the effective viscosities of different polymer solutions are calculated. Rheological behaviors of polymer solution changes in different mass concentration and relative molecular mass in porous media are analyzed. It is indicated that in the range of Darcy seepage velocity, acceleration is increasing during the process of pressure drop on both sides of core is resulted from the increase of flow rate during percolation, its effective viscosity first decreased, then increased with the increases of shear rate at range of Darcy velocity. Higher the relative molecular mass and mass concentration lead greater the effective viscosity.


2013 ◽  
Vol 848 ◽  
pp. 7-10
Author(s):  
Jia Bin Tang ◽  
Wen Xiang Wu ◽  
Zhu Xin Zhang

Using the physical simulation experiment, for the new active polymers, common carve and polymer 25 million to act on interfacial tension test, the results indicate, interfacial tension for common carve and polymer 25 million is about 10 mn/m. and interfacial tension for the active polymer is about 1 mn/m. Rheology showed that the viscosity and elasticity of active polymer solution were higher than 25 million polymer.In liquidity experiment, active polymer solution has the better liquidity than in 25 million polymers in the low permeable formation,the flooding effect of active polymer is better than 25 million polymer and common carve polymer.the better injection and better oil displacement features of active polymer are suitable for low permeability reservoirs to improve oil displacement effect.


2014 ◽  
Vol 6 ◽  
pp. 935159 ◽  
Author(s):  
Feng Guan ◽  
Weiguo Ma ◽  
Yiliu Tu ◽  
Chuanxi Zhou ◽  
Ding Feng ◽  
...  

Coiled tubing drilling has become an important development direction of drilling. The method of combining theoretical calculation with the experimental verification is adopted to analyze the flow of the coiled tubing drilling system. A set of experimental bench is developed, three kinds of curvature ratio of coiled tubing are used, and the frictional pressure losses of coiled tubing and partial pressure drop of each downhole tool are tested. The results of experiments with water agree well with rough pipe calculation model. The pressure losses of coiled tube are obviously larger than that of straight tube, and the value of it is about 11–17%. The larger the curvature ratio is, the more the pressure losses of coiled tubing are. The fluid experiment with the polymer presents obviously the drag reduction effect. Experiment of simulated bottom hole assembly shows that partial pressure drop of bottom hole assembly is large. It has a little effect on the pressure losses of coiled tubing when whole bottom hole assemblies are connected. The research results can be used as the basis for formulating coiled tubing drilling process parameters, which will provide a guide for engineering practice.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 978 ◽  
Author(s):  
Yuan Chi ◽  
Changzhong Zhao ◽  
Junchen Lv ◽  
Jiafei Zhao ◽  
Yi Zhang

CO2-enhanced shale gas recovery (CO2-ESGR) sequestrates anthropogenic CO2 and improves the profitability of shale gas exploitation. This work investigated the adsorption behaviors of CO2 and CH4 on shale from China at 20, 40, 60 and 80 °C. The pressure ranges for CO2 and CH4 were 1–5 and 1–15 MPa, respectively. The excess adsorbed amount of CH4 increased with increasing pressure from the beginning to the end, while the maximum excess CO2 adsorption was observed at approximately 4 MPa. The absolute average deviations (AADs) of CO2 and CH4, determined by the Langmuir + k model, were 2.12–3.10% and 0.88–1.11%, respectively. Relatively good adsorptivity for CO2 was exhibited when the pressure was less than 5 MPa, which was beneficial to the implementation of CO2-ESGR. With continuous increases in pressure, the adsorption capacity of CO2 was weaker than that of CH4, suggesting that the injected CO2 would reduce the partial pressure of CH4 for CO2-ESGR and the displacement effect would no longer be significant. In addition, the adsorption rate of CO2 was much faster than that of CH4. CO2 was more active in the competitive adsorption and it was advantageous to the efficiency of CO2-ESGR.


Sign in / Sign up

Export Citation Format

Share Document