scholarly journals Electrically Controlled Diffraction Grating in Azo Dye-Doped Liquid Crystals

Polymers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1051 ◽  
Author(s):  
Chuen-Lin Tien ◽  
Rong-Ji Lin ◽  
Chi-Chung Kang ◽  
Bing-Yau Huang ◽  
Chie-Tong Kuo ◽  
...  

This research applies the non-linear effect of azo dye-doped liquid crystal materials to develop a small, simple, and adjustable beam-splitting component with grating-like electrodes. Due to the dielectric anisotropy and optical birefringence of nematic liquid crystals, the director of the liquid crystal molecules can be reoriented by applying external electric fields, causing a periodic distribution of refractive indices and resulting in a diffraction phenomenon when a linearly polarized light is introduced. The study also discusses the difference in the refractive index (Δn), the concentration of azo dye, and the rising constant depending on the diffraction signals. The experimental results show that first-order diffraction efficiency can reach ~18% with 0.5 wt % azo dye (DR-1) doped in the nematic liquid crystals.

2011 ◽  
Vol 181-182 ◽  
pp. 26-32
Author(s):  
Benjamin I. Outram ◽  
Steve J. Elston

The difference between e1 and e3 parameters for flexoelectric polarization, as originally defined byMeyer, is measured for nematic liquid crystal materials E7 and BL087 in Twisted Nematic (TN) cells with In-Plane Switching (IPS) electric fields using the crystal rotation method, which measures transmission as a function of angle of incidence. Values of e1 − e3 for E7 and BL087 are found to be 7.2±1.0 pCm−1 and 9.4±1.0 pCm−1 respectively.


Crystals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 275 ◽  
Author(s):  
Noureddine Bennis ◽  
Jakub Herman ◽  
Aleksandra Kalbarczyk ◽  
Przemysław Kula ◽  
Leszek R. Jaroszewicz

Liquid crystals act on the amplitude and the phase of a wave front under applied electric fields. Ordinary LCs are known as field induced birefringence, thus both phase and amplitude modulation strongly depend on the voltage controllable molecular tilt. In this work we present electrooptical properties of novel liquid crystal (LC) mixture with frequency tunable capabilities from 100Hz to 10 KHz at constant applied voltage. The frequency tunability of presented mixtures shown here came from composition of three different families of rodlike liquid crystals. Dielectric measurements are reported for the compounds constituting frequency-controlled birefringence liquid crystal. Characterization protocols allowing the optimum classification of different components of this mixture, paying attention to all relevant parameters such as anisotropic polarizability, dielectric anisotropy, and dipole moment are presented.


2012 ◽  
Vol 20 (3) ◽  
Author(s):  
E. Nowinowski-Kruszelnicki ◽  
J. Kędzierski ◽  
Z. Raszewski ◽  
L. Jaroszewicz ◽  
M. Kojdecki ◽  
...  

AbstractA new method for quick and pretty accurate measurements of splay, twist and bend elastic constants of nematic liquid crystals is experimentally verified. The main concept relies on exploiting only the electric field and determining magnitudes of nematic elastic constants from threshold fields for Freedericksz transitions in only one hybrid in-plane-switched cell. In such cell the deformations of an investigated liquid crystal are controlled by three separated pairs of electrodes confining measurement domains. In two of them inter-digital electrodes are mounted on one cell cover. Splay, twist and bend elastic constants can be measured by a proper choice of electrodes’ configuration together with orienting cover coatings (without applying magnetic fields). In this paper, we describe layout of our cells and results of experimental tests by using different liquid crystals: 5CB and 6CHBT (with positive dielectric anisotropy), Demus’ esters (with negative dielectric anisotropy) and new liquid crystals mixtures produced in our university.


2017 ◽  
Vol 13 (2) ◽  
pp. 4705-4717
Author(s):  
Zhang Qian ◽  
Zhou Xuan ◽  
Zhang Zhidong

Basing on Landau–de Gennes theory, this study investigated the chiral configurations of nematic liquid crystals confined to cylindrical capillaries with homeotropic anchoring on the cylinder walls. When the elastic anisotropy (L2/L1) is large enough, a new structure results from the convergence of two opposite escape directions of the heterochiral twist and escape radial (TER) configurations. The new defect presents when L2/L1≥7 and disappears when L2/L1<7. The new structure possesses a heterochiral hyperbolic defect at the center and two homochiral radial defects on both sides. The two radial defects show different chiralities.


2011 ◽  
Vol 181-182 ◽  
pp. 257-260
Author(s):  
David Statman ◽  
Andrew Jockers ◽  
Daniel Brennan

Chiral nematic liquid crystals prepared with Grandjean texture demonstrate a photonic bandgap whose central wavelength is proportional to the pitch length, P, of the liquid crystal and whose width is given by (ne – no)P. We show that methyl red doped chiral nematics undergo a shift in the photonic bandgap upon photo-isomerization. This shift is a result of (1) photo-induced change in anchoring energy on the nematic surface, and (2) change in the natural pitch length from the photo-isomerization of the azo dye.


2018 ◽  
Vol 9 ◽  
pp. 1544-1549 ◽  
Author(s):  
Margarita A Kurochkina ◽  
Elena A Konshina ◽  
Daria Khmelevskaia

We have experimentally investigated the effect of the reorientation of a nematic liquid crystal (LC) in an electric field on the photoluminescence (PL) of CdSe/ZnS semiconductor quantum dots (QDs). To the LC with positive dielectric anisotropy, 1 wt % QDs with a core diameter of 5 nm was added. We compared the change of PL intensity and decay times of QDs in LC cells with initially planar or vertically orientated molecules, i.e., in active or passive LC matrices. The PL intensity of the QDs increases four-fold in the active LC matrix and only 1.6-fold in the passive LC matrix without reorientation of the LC molecules. With increasing electric field strength, the quenching of QDs luminescence occurred in the active LC matrix, while the PL intensity did not change in the passive LC matrix. The change in the decay time with increasing electric field strength was similar to the behavior of the PL intensity. The observed buildup in the QDs luminescence can be associated with the transfer of energy from LC molecules to QDs. In a confocal microscope, we observed the increase of particle size and the redistribution of particles in the active LC matrix with the change of the electric field strength. At the same time, no significant changes occurred in the passive LC matrix. With the reorientation of LC molecules from the planar in vertical position in the LC active matrix, quenching of QD luminescence and an increase of the ion current took place simultaneously. The obtained results are interesting for controlling the PL intensity of semiconductor QDs in liquid crystals by the application of electric fields.


2021 ◽  
Vol 1198 (1) ◽  
pp. 012006
Author(s):  
S V Kalashnikov ◽  
N A Romanov ◽  
A V Nomoev

Abstract Installation designed to measure the dielectric anisotropy in laboratory studies of liquid crystal polymer films is described. The installation operates on the principle of a balanced alternating current (AC) bridge, allowing the application of a direct external current (bias) to the liquid crystal cell. The internal resistance of the direct current (DC) source, which affects the equilibrium condition of the bridge, is compensated. The frequency of the AC current feeding the bridge and the offset voltage of the cell is regulated within a wide range, which makes it possible to study various functional dependences of the dielectric parameters of liquid crystals and their modifiers.Introduction


Sign in / Sign up

Export Citation Format

Share Document