scholarly journals A Novel Hierarchically Porous Polypyrrole Sphere Modified Separator for Lithium-Sulfur Batteries

Polymers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1344 ◽  
Author(s):  
Baoe Li ◽  
Zhenghao Sun ◽  
Yan Zhao ◽  
Zhumabay Bakenov

The commercialization of Lithium-sulfur batteries was limited by the polysulfide shuttle effect, and modifying the routine separator was an effective method to solve this problem. In this work, a novel hierarchically porous polypyrrole sphere (PPS) was successfully prepared by using silica as hard-templates. As-prepared PPS was slurry-coated on the separator, which could reduce the polarization phenomenon of the sulfur cathode, and efficiently immobilize polysulfides. As expected, high sulfur utilization was achieved by suppressing the shuttle effect. When tested in the lithium-sulfur battery, it exhibited a high capacity of 855 mAh·g−1 after 100 cycles at 0.2 C, and delivered a reversible capacity of 507 mAh·g−1 at 3 C, showing excellent electrochemical performance.

2014 ◽  
Vol 2 (27) ◽  
pp. 10350-10354 ◽  
Author(s):  
Guoqiang Ma ◽  
Zhaoyin Wen ◽  
Jun Jin ◽  
Yan Lu ◽  
Xiangwei Wu ◽  
...  

Sulfur cathode with excellent electrochemical performance based on hollow PANI spheres, which can suppress the shuttle effect and buffer the volume expansion.


2018 ◽  
Vol 6 (42) ◽  
pp. 20926-20938 ◽  
Author(s):  
Yongzheng Zhang ◽  
Ruochen Wang ◽  
Weiqiang Tang ◽  
Liang Zhan ◽  
Shuangliang Zhao ◽  
...  

The GA–CNFs–Ni modified separator endows the “double high” sulfur cathode (5–10 mg cm−2, 90%) with a stable reversible capacity and superior rate performance.


2021 ◽  
pp. 138898
Author(s):  
Mohammad Ramezanitaghartapeh ◽  
Anthony F. Hollenkamp ◽  
Mustafa Musameh ◽  
Peter J. Mahon

Nanoscale ◽  
2021 ◽  
Author(s):  
Fanglei Zeng ◽  
Fang Wang ◽  
Ning Li ◽  
Ke Meng Song ◽  
Shi-Ye Chang ◽  
...  

Li-S battery is considered as one of the most promising battery system because of its large theoretical capacity and high energy density. However, the “shuttle effect” of soluble polysulfides and...


2021 ◽  
Author(s):  
Dongke Zhang ◽  
Ting Huang ◽  
Pengfei Zhao ◽  
Ze Zhang ◽  
Xingtao Qi ◽  
...  

Abstract Due to the low conductivity of sulfur and the dissolution of polysulfides, the research and application of lithium-sulfur (Li-S) batteries have encountered certain resistance. Increasing conductivity and introducing polarity into the sulfur host can effectively overcome these long-standing problems. Herein, We first prepared Co3W3C@ C@ CNTs / S material and used it in the cathode of lithium-sulfur batteries, The existence of carboxylated CNTs can form a conductive network, accelerate the transmission of electrons and improve the rate performance, and polar Co3W3C can form a strong interaction with polysulfide intermediates, effectively inhibiting its shuttle effect, improving the utilization of sulfur cathode electrodes, and improving the capacity and cycle stability. The Co3W3C@C@CNTs / S electrode material has a capacity of 1,093 mA h g-1 at a 0.1 A g− 1 and 482 mA h g-1 at 5 A g− 1. Even after 500 cycles of 2 A g− 1, the capacity of each cycle is only reduced by 0.08%. The excellent stability of this material can provide a new idea for the future development of lithium-sulfur batteries.


Author(s):  
Mahdieh Hakimi ◽  
Zeinab Sanaee ◽  
Shahnaz Ghasemi ◽  
Shamsoddin Mohajerzadeh

Abstract The main drawback of Lithium-Sulfur (Li-S) batteries which leads to a short lifetime, is the shuttle effect during the battery operation. One of the solutions to mitigate the shuttle effect is the utilization of interlayers. Herein, graphene oxide (GO) paper as an interlayer has been implemented between the sulfur cathode fabricated by the vapor deposition process as a binder-free electrode and a separator in a Li-S battery in order to gain a sufficient capacity. The morphological characteristics and electrochemical performance of the fabricated electrode have been investigated. The fabricated battery demonstrates an initial discharge capacity of 1265.46 mAh g-1 at the current density of 100 mA g-1. The coulombic efficiency is obtained to be 88.49% after 40 cycles. The remained capacity for the battery is 44.70% after several cycles at different current densities. The existence of the GO interlayer improves the electrochemical properties of the battery compared to the one with a pure sulfur cathode. The obtained results indicate that after 40 cycles, the capacity retention is 2.1 times more than that of the battery without the GO implementation.


Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2267
Author(s):  
Haisheng Han ◽  
Tong Wang ◽  
Yongguang Zhang ◽  
Arailym Nurpeissova ◽  
Zhumabay Bakenov

A three-dimensionally ordered macroporous ZnO (3DOM ZnO) framework was synthesized by a template method to serve as a sulfur host for lithium–sulfur batteries. The unique 3DOM structure along with an increased active surface area promotes faster and better electrolyte penetration accelerating ion/mass transfer. Moreover, ZnO as a polar metal oxide has a strong adsorption capacity for polysulfides, which makes the 3DOM ZnO framework an ideal immobilization agent and catalyst to inhibit the polysulfides shuttle effect and promote the redox reactions kinetics. As a result of the stated advantages, the S/3DOM ZnO composite delivered a high initial capacity of 1110 mAh g−1 and maintained a capacity of 991 mAh g−1 after 100 cycles at 0.2 C as a cathode in a lithium–sulfur battery. Even at a high C-rate of 3 C, the S/3DOM ZnO composite still provided a high capacity of 651 mAh g−1, as well as a high areal capacity (4.47 mAh cm−2) under high loading (5 mg cm−2).


2019 ◽  
Vol 7 (8) ◽  
pp. 3558-3562 ◽  
Author(s):  
Hongbin Xu ◽  
Yang Liu ◽  
Qianyun Bai ◽  
Renbing Wu

Trash to treasure: discarded cigarette filters have been utilized to fabricate hierarchical macro–micro–mesoporous carbon@graphene composites, which enable high sulfur loading and confine the dissolution of lithium polysulfides, and thus exhibit an excellent electrochemical performance in Li–S batteries.


2019 ◽  
Vol 320 ◽  
pp. 134558 ◽  
Author(s):  
Jingtao Wang ◽  
Pengfei Zhai ◽  
Tongkun Zhao ◽  
Mengjia Li ◽  
Zhihao Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document