scholarly journals Sound Absorption Properties of Perforated Recycled Polyurethane Foams Reinforced with Woven Fabric

Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 401
Author(s):  
Roberto Atiénzar-Navarro ◽  
Romina del Rey ◽  
Jesús Alba ◽  
Víctor J. Sánchez-Morcillo ◽  
Rubén Picó

The acoustic properties of recycled polyurethane foams are well known. Such foams are used as a part of acoustic solutions in different fields such as building or transport. This paper aims to seek improvements in the sound absorption of these recycled foams when they are combined with fabrics. For this aim, foams have been drilled with cylindrical perforations, and also combined with different fabrics. The effect on the sound absorption is evaluated based on the following key parameters: perforation rate (5% and 20%), aperture size (4 mm and 6 mm), and a complete perforation depth. Experimental measurements were performed by using an impedance tube for the characterization of its acoustic behavior. Sound absorption of perforated samples is also studied—numerically by finite element simulations, where the viscothermal losses were considered; and analytically by using models for the perforated foam and the fabric. Two textile fabrics were used in combination with perforated polyurethane samples. Results evidence a modification of the sound absorption at mid frequencies employing fabrics that have a membrane-type acoustic response.

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Shuming Chen ◽  
Yang Jiang ◽  
Jing Chen ◽  
Dengfeng Wang

Flexible polyurethane (PU) foams comprising various additive components were synthesized to improve their acoustic performances. The purpose of this study was to investigate the effects of various additive components of the PU foams on the resultant sound absorption, which was characterized by the impedance tube technique to obtain the incident sound absorption coefficient and transmission loss. The maximum enhancement in the acoustic properties of the foams was obtained by adding fluorine-dichloroethane (141b) and triethanolamine. The results showed that the acoustic absorption properties of the PU foams were improved by adding 141b and triethanolamine and depended on the amount of the water, 141b, and triethanolamine.


2021 ◽  
pp. 004051752110155
Author(s):  
Min Peng ◽  
Xiaoming Zhao ◽  
Weibin Li

Perforated materials in the traditional sense are rigid, usually dense, costly and inflexible. For this study, polyester/cotton blended woven fabric as the base fabric, nano-SiO2 (silicon dioxide) as the functional particles and PU (polyurethane) as the matrix were selected. Accordingly, flexible PU/SiO2 perforated coating composites with different process parameters were developed. The influence of the nano-SiO2 content, perforation diameter, perforation rate, number of fiber felt layers and cavity depth on the sound absorption coefficient were investigated. The resonant frequencies of materials with different cavity depths were evaluated by both theoretical calculation and experimental method. It was found that the flexible perforated composite has good sound absorption and mechanical properties, and has great potential for applications requiring soft and lightweight sound absorption materials.


2021 ◽  
pp. 103872
Author(s):  
Behzad Mohammadi ◽  
Amir Ershad-Langroudi ◽  
Gholamreza Moradi ◽  
Abdolrasoul Safaiyan ◽  
Peymaneh Habibi

2019 ◽  
Vol 50 (4) ◽  
pp. 512-525
Author(s):  
Huan Liu ◽  
Baoqi Zuo

Blend films based on polyvinyl alcohol/polyethylene oxide (70/30 wt%) undoped and doped with different concentration of graphene oxide were prepared by spiral vane electrospinning. Characteristic properties of the blend films were investigated by using X-ray diffraction and scanning electron microscopy. The sound absorption performance of the compositions (nanofiber membranes and needle punched non-woven fabric) was tested by an impedance tube. The sound absorption performance of non-woven fabric has greatly improved after combining with thin nanofiber membranes. With addition of graphene oxide, the fibers were intertwined in a loop and form a network, the areal density and surface roughness of the nanofiber membrane are reduced. Composites containing polyvinyl alcohol/polyethylene oxide nanofiber membranes and composites containing polyvinyl alcohol/polyethylene oxide/graphene oxide nanofiber membranes exhibited different sound absorption properties in different frequency bands. When the fiber coefficient of variation was small, the average sound absorption coefficient of the composite material was high. However, composites containing both polyvinyl alcohol/polyethylene oxide and polyvinyl alcohol/polyethylene oxide/graphene oxide nanofiber membranes had similar sound absorption properties, and the average sound absorption coefficient was greater than that of polyvinyl alcohol/polyethylene oxide composites.


2016 ◽  
Vol 47 (1) ◽  
pp. 3-19 ◽  
Author(s):  
Oğuz Demiryürek ◽  
Hüsnü Aydemir

Roller blind fabrics are preferred and commonly used in home and office. In general, these fabrics are produced by coating the acrylic blended material, which is known by their ultraviolet properties, onto polyester woven fabrics. In this study, in order to characterize the sound insulation properties of roller blind fabrics, coating resin having different ratios of acrylic are applied onto different polyester woven structures. Sound absorption properties of these fabrics (front and back sides) are measured through dual microphone impedance tube and investigated by statistical analyses. Regression curves are obtained and optimum fabric properties on sound absorbing property have been suggested. As a result, acrylic content in coating material, fabric type, and viol structures occurred by coating process on the woven fabric are found as effective parameters on sound absorption properties of these fabrics. Increasing acrylic content in the resin up to 40% increases the sound absorbing value but further increasing this ratio yields sound reflection from the structure, in general. Optimum sound absorption and reflection values are provided with 40% acrylic rate in coating mixture.


Polymer Korea ◽  
2020 ◽  
Vol 44 (1) ◽  
pp. 91-98 ◽  
Author(s):  
Seung Hwan Baek ◽  
Hyeon Jun Choi ◽  
Jung Hyeun Kim

2020 ◽  
pp. 1351010X2093313 ◽  
Author(s):  
Gino Iannace ◽  
Giuseppe Ciaburro

Plastic is widely used all over the world and its production has been increasing continuously in recent years. But plastic presents significant problems about its end-of-life given its important environmental impact. These problems impose recycling policies which provide for the collection and recycling of plastic materials. In this work, the acoustic properties of a recycled polyethylene terephthalate-based material were analyzed. The material showed good sound-absorbing characteristics, especially at high frequencies. In addition, a numerical model based on the Gaussian regression was developed to simulate the sound absorption coefficient of the material. The model returned an R-Squared value of 0.97 demonstrating excellent performance.


2017 ◽  
Vol 62 ◽  
pp. 13-22 ◽  
Author(s):  
Nuno Gama ◽  
Rui Silva ◽  
António P.O. Carvalho ◽  
Artur Ferreira ◽  
Ana Barros-Timmons

Sign in / Sign up

Export Citation Format

Share Document