Sound absorbing properties of roller blind curtain fabrics

2016 ◽  
Vol 47 (1) ◽  
pp. 3-19 ◽  
Author(s):  
Oğuz Demiryürek ◽  
Hüsnü Aydemir

Roller blind fabrics are preferred and commonly used in home and office. In general, these fabrics are produced by coating the acrylic blended material, which is known by their ultraviolet properties, onto polyester woven fabrics. In this study, in order to characterize the sound insulation properties of roller blind fabrics, coating resin having different ratios of acrylic are applied onto different polyester woven structures. Sound absorption properties of these fabrics (front and back sides) are measured through dual microphone impedance tube and investigated by statistical analyses. Regression curves are obtained and optimum fabric properties on sound absorbing property have been suggested. As a result, acrylic content in coating material, fabric type, and viol structures occurred by coating process on the woven fabric are found as effective parameters on sound absorption properties of these fabrics. Increasing acrylic content in the resin up to 40% increases the sound absorbing value but further increasing this ratio yields sound reflection from the structure, in general. Optimum sound absorption and reflection values are provided with 40% acrylic rate in coating mixture.

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2814
Author(s):  
Bethalihem Teferi Samuel ◽  
Marcin Barburski ◽  
Jaroslaw R Blaszczak ◽  
Ewa Witczak ◽  
Katarzyna Abramczyk

Utilizing textile-based acoustic materials can be considered basically from two points of view. First, it may be used as a sound absorbing material. Second, it may be used as a decoration that gives the surrounding area a new artistic appearance. To improve the acoustic possibilities of any woven fabric, it is necessary to study the influences of yarn characteristics and the internal structures of weave interlacement. To understand the impact of the yarn on the fabric, the samples were prepared using only polyester fiber as textured, twisted, and staple yarns. Regarding this experiment, the basic weave’s structure type, such as plain, rib, sateen, and twill, were used. Overall, 16 woven fabrics were prepared. The investigation was performed in the range of low to medium acoustic frequencies. The experiments were conducted in an anechoic chamber. Compared to other yarn types, fabrics formed from textured polyester yarn had higher sound absorption properties. Moreover, the observed results show that the different incidence angles of acoustic signals influence the measured sound absorption properties of a textile.


2019 ◽  
Vol 14 ◽  
pp. 155892501984087
Author(s):  
Mlando Basel Mvubu ◽  
Rajesh Anandjiwala ◽  
Asis Patnaik

This article reports a study on the effect of different natural fibres, their blend ratios and varying air gaps between a needle-punched non-woven fabric and polystyrene backing on the sound absorption coefficients of the needle-punched non-woven fabrics. These parameters as well as their interactive effects were studied by variance analysis. The air gap varied from 0 to 25 mm in 5 mm increments; three natural fibre types (agave, flax and waste wool) were used; each one blended with polyester fibres in three blending ratios. The univariate test of significance showed that all three parameters and two of the three two-way interactions effects on sound absorption coefficients were significant. Only two-way interaction effect between blend ratio and air gap on sound absorption coefficient was not significant. It was found that the sound absorption coefficients increased with an increase in air gap size up to 15 mm, after which they decreased slightly as the air gap was increased further to 25 mm. In addition, the non-woven fabrics produced from the blend of waste wool and polyester fibres achieved the highest sound absorption coefficients than those of the other two natural fibres, and generally, the sound absorption coefficients increased with the increase in polyester fibre content in each blend studied.


2021 ◽  
Author(s):  
Md. Shamsuzzaman

Abstract Seam performance ensures the durability, attractiveness, strength etc. of the sewn garments. Fabric types, fabric densities, fabric strength, seam types, sewing thread count, thread strength, stitch densities and stitch types influence the performance of a sewn seam. This paper investigates the performance of sewn seam of various structure of woven fabric. The variables of this research are stitch densities (SPI), sewing thread count, seam types and woven structures. We conduct our research over plain, twill 2/1, twill 2/2, oxford and poplin woven structure. Firstly, we apply lockstitch (301) to produce superimposed, lapped and bound seam on the woven sample by using thread count 27 Tex, 30 Tex, 20/2 Tex, 40 Tex, 40/2 Tex, 40/3 Tex having stitch densities (SPI) 8, 10 and 12. Then according to ASTM D1683 standard, we measured the tensile strength test and recorded the seam breaking strength (N). We apply error bars over each diagram to investigate the standard deviation. Finally, we discuss four hypothesis to conclude our research work. We found higher seam breaking strength with the increase of thread count and SPI. The bound seam samples has shown superior seam breaking strength than superimposed and lapped seam; poplin structure surpassed to others. The seam efficiency of the samples varies from 60–90% and do not exceeds 100%. Finally, we found some significant alternatives hypothesis of the population since F values exceeded F critical values for the sewn seam.


2019 ◽  
Vol 50 (4) ◽  
pp. 512-525
Author(s):  
Huan Liu ◽  
Baoqi Zuo

Blend films based on polyvinyl alcohol/polyethylene oxide (70/30 wt%) undoped and doped with different concentration of graphene oxide were prepared by spiral vane electrospinning. Characteristic properties of the blend films were investigated by using X-ray diffraction and scanning electron microscopy. The sound absorption performance of the compositions (nanofiber membranes and needle punched non-woven fabric) was tested by an impedance tube. The sound absorption performance of non-woven fabric has greatly improved after combining with thin nanofiber membranes. With addition of graphene oxide, the fibers were intertwined in a loop and form a network, the areal density and surface roughness of the nanofiber membrane are reduced. Composites containing polyvinyl alcohol/polyethylene oxide nanofiber membranes and composites containing polyvinyl alcohol/polyethylene oxide/graphene oxide nanofiber membranes exhibited different sound absorption properties in different frequency bands. When the fiber coefficient of variation was small, the average sound absorption coefficient of the composite material was high. However, composites containing both polyvinyl alcohol/polyethylene oxide and polyvinyl alcohol/polyethylene oxide/graphene oxide nanofiber membranes had similar sound absorption properties, and the average sound absorption coefficient was greater than that of polyvinyl alcohol/polyethylene oxide composites.


2015 ◽  
Vol 15 (3) ◽  
pp. 173-180 ◽  
Author(s):  
Samson Rwawiire ◽  
Blanka Tomkova ◽  
Eulalia Gliscinska ◽  
Izabella Krucinska ◽  
Marina Michalak ◽  
...  

AbstractThe quest for sound-absorbing materials that are not only environmentally friendly, but also sustainable is the foremost reason for natural fibre-acoustic materials. Bark cloth is a natural non-woven fabric that is largely produced from Ficus trees. An exploratory investigation of bark cloth a non-woven material and its reinforcement in epoxy polymer composites has been fabricated and investigated for the sound absorption properties so as to find the most suitable applications and also to see whether bark cloth can be used in some applications in place of man-made fibres. Three types of material species were investigated with their respective composites. The fibre morphology showed bark cloth to be a porous fabric that showed promising sound absorption properties at higher frequencies. The sound absorption results of four-layer material selections of Ficus natalensis, Ficus brachypoda and Antiaris toxicaria bark cloth showed sound absorption coefficient of 0.7; 0.71 and 0.91 at f > 6400 Hz, respectively. The bark cloth reinforced laminar epoxy composites had reduced sound absorption coefficients, which ranged from 0.1 to 0.35, which was attributed to decreased porosity and vibration in the bark cloth fibre network.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Valentinus Galih Vidia Putra ◽  
Irwan ◽  
Andrian Wijayono ◽  
JulianyNingsih Mohamad ◽  
Yusril Yusuf

Abstract Woven fabric in Indonesia is generally known as a material for making clothes and it has been applied as an interior finishing material in buildings, such as sound absorbent material. This study presents a new method for predicting the sound absorption of woven fabrics using a modification of the wave equations and using genetic algorithms. The main aim of this research is to study the sound absorption properties of woven fabric by modeling using a modification of the sound wave equations and using genetic algorithms. A new model for predicting the sound absorption coefficient of woven fabric (plain, twill 2/1, rips and satin fabric) as a function of porosity, the weight of the fabric, the thickness of the fabric, and frequency of the sound wave, was determined in this paper. In this research, the sound absorption coefficient equation was obtained using the modification of the sound wave equation as well as using genetic algorithms. This new model included the influence of the sound absorption coefficient phenomenon caused by porosity, the weight of the fabric, the thickness of fabric as well as the frequency of the sound wave. In this study, experimental data showed a good agreement with the model


Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 401
Author(s):  
Roberto Atiénzar-Navarro ◽  
Romina del Rey ◽  
Jesús Alba ◽  
Víctor J. Sánchez-Morcillo ◽  
Rubén Picó

The acoustic properties of recycled polyurethane foams are well known. Such foams are used as a part of acoustic solutions in different fields such as building or transport. This paper aims to seek improvements in the sound absorption of these recycled foams when they are combined with fabrics. For this aim, foams have been drilled with cylindrical perforations, and also combined with different fabrics. The effect on the sound absorption is evaluated based on the following key parameters: perforation rate (5% and 20%), aperture size (4 mm and 6 mm), and a complete perforation depth. Experimental measurements were performed by using an impedance tube for the characterization of its acoustic behavior. Sound absorption of perforated samples is also studied—numerically by finite element simulations, where the viscothermal losses were considered; and analytically by using models for the perforated foam and the fabric. Two textile fabrics were used in combination with perforated polyurethane samples. Results evidence a modification of the sound absorption at mid frequencies employing fabrics that have a membrane-type acoustic response.


2018 ◽  
Vol 89 (5) ◽  
pp. 855-866 ◽  
Author(s):  
Xiaoning Tang ◽  
Deyi Kong ◽  
Xiong Yan

In this study, the effects of physical parameters on the acoustic absorption properties of woven fabrics were studied. The acoustic absorption properties of 24 kinds of woven fabrics with different structural parameters were measured and analyzed. Multiple linear regression models have been established to characterize the relationship between acoustic behavior and various physical parameters. It has been found that the acoustic absorption properties were mainly determined by the perforation ratio and air permeability. The decrease in perforation ratio and air permeability results in an increase of acoustic absorption properties of woven fabrics. Furthermore, three woven fabrics were used to validate the proposed multiple regression models. The established models could well predict the acoustic absorption properties of woven fabrics where the correlation coefficient is higher than 0.77 with air gaps of 1, 2, and 3 cm, respectively.


Sign in / Sign up

Export Citation Format

Share Document