scholarly journals Effect of Pollyallylamine on Alcoholdehydrogenase Structure and Activity

Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 832
Author(s):  
Aleksandr L. Kim ◽  
Egor V. Musin ◽  
Alexey V. Dubrovskii ◽  
Sergey A. Tikhonenko

In this article, the effect of polyallylamine (PAA) on the structure and catalytic characteristics of alcohol dehydrogenase (ADH) was studied. For this research, we used methods of stationary kinetics and fluorescence spectroscopy. It has been shown that PAA non-competitively inhibits ADH activity while preserving its quaternary structure. It was established that 0.1 M ammonium sulfate removes the inhibitory effect of PAA on ADH, which is explained by the binding of sulfate anion (NH4)2SO4 with polyallylamine amino groups. As a result, the rigidity of the polymer chain increases and the ability to bind to the active loop of the enzyme increases. It is also shown that sodium chloride removes the inhibitory effect of PAA on ADH due to an electrostatic screening of the enzyme from polyelectrolyte. The method of encapsulating ADH in polyelectrolyte microcapsules was adapted to the structure and properties of the enzyme molecule. It was found that the best for ADH is its encapsulation by adsorption into microcapsules already formed on CaCO3 particles. It was shown that the affinity constant of encapsulated alcohol dehydrogenase to the substrate is 1.7 times lower than that of the native enzyme. When studying the affinity constant of ADH in a complex with PAA to ethanol, the effect of noncompetitive inhibition of the enzyme by polyelectrolyte was observed.

Genetics ◽  
1978 ◽  
Vol 89 (2) ◽  
pp. 371-388
Author(s):  
John F McDonald ◽  
Francisco J Ayala

ABSTRACT Recent studies by various authors suggest that variation in gene regulation may be common in nature, and might be of great evolutionary consequence; but the ascertainment of variation in gene regulation has proven to be a difficult problem. In this study, we explore this problem by measuring alcohol dehydrogenase (ADH) activity in Drosophila melanogaster strains homozygous for various combinations of given second and third chromosomes sampled from a natural population. The structural locus (Adh) coding for ADH is on the second chromosome. The results show that: (1) there are genes, other than Adh, that affect the levels of ADH activity; (2) at least some of these "regulatory" genes are located on the third chromosome, and thus are not adjacent to the Adh locus; (3) variation exists in natural populations for such regulatory genes; (4) the effect of these regulatory genes varies as they interact with different second chromosomes; (5) third chromosomes with high-activity genes are either partially or completely dominant over chromosomes with low-activity genes; (6) the effects of the regulatory genes are pervasive throughout development; and (7) the third chromosome genes regulate the levels of ADH activity by affecting the number of ADH molecules in the flies. The results are consistent with the view that the evolution of regulatory genes may play an important role in adaptation.


2005 ◽  
Vol 102 (6) ◽  
pp. 1101-1107 ◽  
Author(s):  
Hartmut Vatter ◽  
Michael Zimmermann ◽  
Veronika Tesanovic ◽  
Andreas Raabe ◽  
Lothar Schilling ◽  
...  

Object. The central role of endothelin (ET)—1 in the development of cerebral vasospasm after subarachnoid hemorrhage is indicated by the successful treatment of this vasospasm in several animal models by using selective ETA receptor antagonists. Clazosentan is a selective ETA receptor antagonist that provides for the first time clinical proof that ET-1 is involved in the pathogenesis of cerebral vasospasm. The aim of the present investigation was, therefore, to define the pharmacological properties of clazosentan that affect ETA receptor—mediated contraction in the cerebrovasculature. Methods. Isometric force measurements were performed in rat basilar artery (BA) ring segments with (E+) and without (E−) endothelial function. Concentration effect curves (CECs) were constructed by cumulative application of ET-1 or big ET-1 in the absence or presence of clazosentan (10−9, 10−8, and 10−7 M). The inhibitory potency of clazosentan was determined by the value of the affinity constant (pA2). The CECs for contraction induced by ET-1 and big ET-1 were shifted to the right in the presence of clazosentan in a parallel dose-dependent manner, which indicates competitive antagonism. The pA2 values for ET-1 were 7.8 (E+) and 8.6 (E−) and the corresponding values for big ET-1 were 8.6 (E+) and 8.3 (E−). Conclusions. The present data characterize clazosentan as a potent competitive antagonist of ETA receptor—mediated constriction of the cerebrovasculature by ET-1 and its precursor big ET-1. These functional data may also be used to define an in vitro profile of an ET receptor antagonist with a high probability of clinical efficacy.


2015 ◽  
Vol 39 (2) ◽  
pp. 1139-1147 ◽  
Author(s):  
Jia-min Liu ◽  
Lu Wang ◽  
Kai Yu ◽  
Zhan-hua Su ◽  
Chun-xiao Wang ◽  
...  

Tree {AsW9}-based sandwich compounds exhibit good electrocatalytic activity, antiferromagnetic interactions, and inhibitory effect on proliferation of HeLa cells.


1978 ◽  
Vol 119 (3) ◽  
pp. 451-453 ◽  
Author(s):  
Bryce V. Plapp ◽  
Eila Zeppezauer ◽  
Carl-Ivar Brändén

2001 ◽  
Vol 20 (5) ◽  
pp. 255-258
Author(s):  
L Chrostek ◽  
D Szczepura ◽  
M Szmitkowski ◽  
W Jelski ◽  
J Wierzchowski

The activities of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) were measured with fluorogenic naphthaldehydes in the stomach and small intestine homogenates of rats dosed with 6 g methanol/kg bw after 6, 12, 24 h and 2, 5, 7 days. After intoxication with a sublethal dose, the ADH activity measured with these naphthaldehydes andALDH activities in the stomach and small intestine were significantly decreased. This inhibition is stronger in the stomach and probably depends on cell damage and protein denaturation. We conclude that the activity measured with 6-methoxy-2-naphthaldehyde (MONAL-62) may be due to the activity of rat ADH-1 isoenzyme, and the activity detected with 4-methoxy-1-naphthaldehyde (MONAL-41) to the activity of rat ADH-2 isoenzyme.


1979 ◽  
Author(s):  
J. Hawiger ◽  
S. Parkinson ◽  
S. Timmons

Fibrinogen is a plasma factor required for aggregation of human platelets by ADP. The mechanism of platelet-ADP-fibrinogen interaction was studied by measuring the equilibrium binding of 125I-fibrinogen to human platelets separated from plasma proteins. Binding of 125I-fibrinogen to platelets not stimulated with ADP was low and unaffected by an excess of unlabel led fibrinogen. However, when platelets were stimulated with 4μM of ADP, there was an eightfold increase In the number of available binding sites for human fibrinogen, with affinity constant of 1.9 x 109M-1. This striking increase in fibrinogen receptor sites on human platelets was specific for ADP as contrasted to ATP, AMP, and adenosine. Prostacyclin (Prostaglandin I2, PGI2), a novel prostaglandin produced by the blood vessel wall, completely blocked this ADP-induced increase in fibrinogen receptor sites on human platelets. The effect of PGI2 was prompt and concentration dependent, reaching maximum at 10-9M. 6-keto PGF2 a stable derivative ot PGI2, did not have such an effect. Thus movement of fibrinogen receptor sites on human platelet membrane stimulated with ADP is prevented by PGI2. This represents a new biologic property of this vascular hormone and contributes to better understanding of its potent inhibitory effect in vitro and in vivo on ADP-induced platelet aggregation requiring mobilization of fibrinogen receptor.


Genetics ◽  
1987 ◽  
Vol 116 (4) ◽  
pp. 523-530
Author(s):  
Aileen K W Taguchi ◽  
Elton T Young

ABSTRACT The alcohol dehydrogenase II isozyme (enzyme, ADHII; structural gene, ADH2) of the yeast, Saccharomyces cerevisiae, is under stringent carbon catabolite control. This cytoplasmic isozyme exhibits negligible activity during growth in media containing fermentable carbon sources such as glucose and is maximal during growth on nonfermentable carbon sources. A recessive mutation, adr6-1, and possibly two other alleles at this locus, were selected for their ability to decrease Ty-activated ADH2-6 c expression. The adr6-1 mutation led to decreased ADHII activity in both ADH2-6c and ADH2+ strains, and to decreased levels of ADH2 mRNA. Ty transcription and the expression of two other carbon catabolite regulated enzymes, isocitrate lyase and malate dehydrogenase, were unaffected by the adr6-1 mutation. adr6-1/adr6-1strains were defective for sporulation, indicating that adr6 mutations may have pleiotropic effects. The sporulation defect was not a consequence of decreased ADH activity. Since the ADH2-6c mutation is due to insertion of a 5.6-kb Ty element at the TATAA box, it appears that the ADR6+-dependent ADHII activity required ADH2 sequences 3′ to or including the TATAA box. The ADH2 upstream activating sequence (UAS) was probably not required. The ADR6 locus was unlinked to the ADR1 gene which encodes another trans-acting element required for ADH2 expression.


Author(s):  
Wojciech Jelski ◽  
Joanna Piechota ◽  
Karolina Orywal ◽  
Barbara Mroczko

Introduction: Intrahepatic cholestasis of pregnancy (ICP) is the liver disorder in the second or early third trimester of pregnancy. It is characterized by pruritus with increased serum bile acids concentration and other liver function tests. ICP  is connected with increased risk of fetal mortality, but is unfortunately detected quite late. Therefore, it is important to recognize the disease in its early stages. We aimed to investigate the serum alcohol dehydrogenase (ADH) activity and compare it with the concentration of total bile acid (TBA) in women with ICP. Methods: Serum samples were taken for routine investigation from 80 pregnancies with ICP in the second or third trimester of pregnancy and from 80 healthy pregnant women in the same time of pregnancy. For measurement of class I activity we used the spectrofluorometric methods. The total ADH activitiy was measured by the photometric method. Results: The analysis of results shows a statistically significant increase in the activity of ADH I and ADH total (about 60% and 41.3%, respectively). Activity of ADH I well correlated with aminotransferases (alanine ALT and aspartate AST) and total bile acids (TBA) concentration. The total ADH activity was also positively correlated with ALT, AST and total bile acids. Conclusion: We can state that the activity of class I alcohol dehydrogenase isoenzyme in the sera of patients with ICP is increased and seems to be a good indicator of liver cell destruction during this disease and is comparable with the value of other markers.


Genetics ◽  
1986 ◽  
Vol 114 (4) ◽  
pp. 1165-1190
Author(s):  
Charles F Aquadro ◽  
Susan F Desse ◽  
Molly M Bland ◽  
Charles H Langley ◽  
Cathy C Laurie-Ahlberg

ABSTRACT Variation in the DNA restriction map of a 13-kb region of chromosome ll including the alcohol dehydrogenase structural gene (Adh) was examined in Drosophila melanogaster from natural populations. Detailed analysis of 48 D. melanogaster lines representing four eastern United States populations revealed extensive DNA sequence variation due to base substitutions, insertions and deletions. Cloning of this region from several lines allowed characterization of length variation as due to unique sequence insertions or deletions [nine sizes; 21-200 base pairs (bp)] or transposable element insertions (several sizes, 340 bp to 10.2 kb, representing four different elements). Despite this extensive variation in sequences flanking the Adh gene, only one length polymorphism is clearly associated with altered Adh expression (a copia element approximately 250 bp 5′ to the distal transcript start site). Nonetheless, the frequency spectra of transposable elements within and between Drosophila species suggests they are slightly deleterious. Strong nonrandom associations are observed among Adh region sequence variants, ADH allozyme (Fast vs. Slow), ADH enzyme activity and the chromosome inversion ln(2L)t. Phylogenetic analysis of restriction map haplotypes suggest that the major twofold component of ADH activity variation (high vs. low, typical of Fast and Slow allozymes, respectively) is due to sequence variation tightly linked to and possibly distinct from that underlying the allozyme difference. The patterns of nucleotide and haplotype variation for Fast and Slow allozyme lines are consistent with the recent increase in frequency and spread of the Fast haplotype associated with high ADH activity. These data emphasize the important role of evolutionary history and strong nonrandom associations among tightly linked sequence variation as determinants of the patterns of variation observed in natural populations.


Sign in / Sign up

Export Citation Format

Share Document