scholarly journals Highly Hydrophobic Cotton Fabrics Modified by Poly(methylhydrogen)siloxane and Fluorinated Olefin: Characterization and Applications

Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 833
Author(s):  
Huiping Lin ◽  
Qingjian Hu ◽  
Tianyu Liao ◽  
Xinxiang Zhang ◽  
Wenbin Yang ◽  
...  

Highly hydrophobic cotton fabrics were obtained with poly(methylhydrogen)siloxane (PMHS) and a further fluorinated olefin modification. The chemical structures and microstructures of PMHS-modified cotton fabrics were characterized, and application of the resultant cotton fabrics in stain resistance and oil–water separation was demonstrated. PMHS chains with very low surface energy were grafted onto cotton fabric by the dehydrogenation reaction between –Si–H of PMHS and –OH groups of cotton fabric at room temperature. The water contact angle of PMHS-modified cotton fabric was 141.7°, which provided the modified cotton fabric with good stain resistance to waterborne pollutants. The separation efficiency of diesel from water was higher than 92% for 20 repeatable separation cycles. A further improvement in stain resistance to oil was also demonstrated by a further addition reaction of 1H,1H,2H-perfluoro-1-decene with PMHS-modified cotton fabric.

Polymers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 442 ◽  
Author(s):  
Mingguang Yu ◽  
Qing Wang ◽  
Wenxin Yang ◽  
Yonghang Xu ◽  
Min Zhang ◽  
...  

In this paper, we present a facile and efficient strategy for the fabrication of magnetic, durable, and superhydrophobic cotton for oil/water separation. The superhydrophobic cotton functionalized with Fe3O4 magnetic nanoparticles was prepared via the in situ coprecipitation of Fe2+/Fe3+ ions under ammonia solution on cotton fabrics using polyvinylpyrrolidone (PVP) as a coupling agent and hydrophobic treatment with tridecafluorooctyl triethoxysilane (FAS) in sequence. The as-prepared cotton demonstrated excellent superhydrophobicity with a water contact angle of 155.6° ± 1.2° and good magnetic responsiveness. Under the control of the external magnetic field, the cotton fabrics could be easily controlled to absorb the oil from water as oil absorbents, showing high oil/water separation efficiency, even in hot water. Moreover, the cotton demonstrated remarkable mechanical durable properties, being strongly friction-resistant against sandpaper and finger wipe, while maintaining its water repellency. This study developed a novel and efficient strategy for the construction of magnetic, durable, and superhydrophobic biomass-based adsorbent for oil/water separation, which can be easily scaled up for practical oil absorption.


Author(s):  
M. E. Mohamed ◽  
B. A. Abd-El-Nabey

Abstract In the present work, dopamine is self-polymerized on cotton fabric by a simple deep-coating method and followed by modification with an ethanolic solution of palmitic acid: a superhydrophobic/oleophilic cotton fabric was obtained. The as-prepared cotton fabric exhibits a superhydrophobic character with a water contact angle of 157o. The absorption capacity of as-prepared superhydrophobic/oleophilic cotton fabric in n-hexane, petroleum ether, and silicone oil was determined. The results show that silicone oil has the highest absorption capacity while n-hexane has the lowest value. The absorption capacity is nearly constant even after ten cycles, indicating the efficient recyclability of the as-prepared superhydrophobic/oleophilic cotton fabric for oil separation. The as-prepared superhydrophobic/oleophilic cotton fabric shows excellent separation efficiency, high flux rate, and excellent chemical and mechanical stability.


Author(s):  
Niken Aprilia Eka Putri ◽  
Arif Tjahjono ◽  
Perdamean Sebayang

In this research, a modification of polyurethane (PU) sponge material has been made to obtain superhydrophobic-superoleophilic properties. The PU sponge was coated with several nanomaterials such as ZnO, Fe3O4+TEOS, and stearic acid by dip-coating and drop-coating methods. The tests include selective separation of oil and water with a magnetic response. Several types of oil and organic solvents were tested for absorption capacity. The results showed that the PU@ZnO@Fe3O4@SA sponge has a good absorption capacity, from 4.37 mL to 7.37 mL. The fabricated PU sponge could selectively separate oil from water with a separation efficiency above 99%. The fabricated PU sponge also could be magnetically driven by external magnetic fields. From the characterization using 3D OM, the water contact angle was 153.38°, which indicates that the PU@ZnO@Fe3O4@SA sponge is superhydrophobic. And from surface morphology obtained an average pore size diameter of 167.475 μm.


Author(s):  
Balraj K. Tudu ◽  
Aditya Kumar ◽  
Bharat Bhushan

Superoleophobicity is of interest for practical applications such as liquid repellency, self-cleaning, stain resistance, anti-bacterial properties and oil–water separation. In this work, the superoleophobic coating on cotton fabric was applied by simple immersion in TiO 2 nanoparticles, perfluorodecyltriethoxysilane and tertraethylorthosilicate solution. Its anti-wetting properties, surface morphology and functionality were characterized. The coated cotton fabric shows superoleophobicity with oil (surface tension more than 27 mN m −1 ) contact angle of 152° and tilt angle of 6°. Furthermore, the superoleophobic cotton fabric was demonstrated to exhibit self-cleaning, stain resistance, mechanical durability, chemical stability, thermal stability, anti-bacterial properties and oil–water separation capabilities. This article is part of the theme issue ‘Bioinspired materials and surfaces for green science and technology (part 2)’.


Coatings ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 943
Author(s):  
Hua Wang ◽  
Rajnesh Kumar ◽  
Hafeezullah Memon

Oil–water separation is among the critical issues worldwide due to recent massive oil spills. Moreover, domestic and industrial water pollution due to oil discharge affects marine and aquatic life. Cotton is the most predominant fiber globally because of its use as a principal and popular clothing material. Cotton is also the leading raw material for technical and functional textile applications. In this study, the fabric was cured with poly (methyl methacrylate) (PMMA) nanoparticles to develop hydrophobic and oleophilic cotton fabrics. The dehydrating agents, N,N′-dicyclohexylcarbodiimide (DCC) and dimethyl aminopyridine (DMAP), were used to catalyze the esterification. The results proved that the excellent hydrophobicity of modified cotton fabric provides a water contact angle higher than 140°. In addition, Fourier transforms infrared (FTIR) spectroscopy, as well as X-ray photoelectron spectroscopy (XPS) analysis, confirmed the fabric surface modification. Surface morphological analysis by scanning electron microscope (SEM) revealed the uniform rough surface structure of the modified fabric with nano-coating. The modified fabric resulted in the high separation efficiency of oil and water, suggesting this strategy to be suitable for advanced oil–water separation.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Lizheng Sha ◽  
Chao Ma ◽  
Huifang Zhao ◽  
Supeng Qiu ◽  
Zhongyu Yan ◽  
...  

Abstract Superhydrophobic surfaces have high potential in self-cleaning and oil-water separation applications. We developed a three-step method for the preparation of superhydrophobic filter paper. It involved citric acid (CA) pretreatment to activate cellulose fibers, coating with cellulose nanofibrils/functionalized silica (CNFs/m-SiO2) slurry to increase surface roughness, and grafting of hexadecyltrimethoxysilane (HDTMS) to enhance water resistance. The water contact angle (WCA) and siding angle (SA) of the prepared filter paper reached 151.5° and 7.5°, respectively. The results showed that, compared to the coated filter paper without the added CNFs, the coated paper with CNFs had higher retention of m-SiO2, thus roughness required for superhydrophobic surface was achieved. Further test under frequent abrasion and acid or alkali conditions showed that CA pretreatment improved the durability of superhydrophobic filter paper due to chemical crosslinking between the modified substrate and m-SiO2. Besides, the prepared superhydrophobic filter paper had outstanding self-cleaning property and high oil-water separation efficiency for various oil-water mixtures. Therefore, it is expected to be used for the treatment of oily wastewater.


2021 ◽  
Vol 9 ◽  
Author(s):  
Qilei Tong ◽  
Zhenzhong Fan ◽  
Biao Wang ◽  
Qingwang Liu ◽  
Yunhe Bo ◽  
...  

Oily sewage and floating oil in the ocean post a huge threat to the ecological environment, therefore, developing an efficient separation for oil/water mixtures is an urgent need. Currently, superhydrophobic materials exhibit excellent oil/water separation ability. In this study, a superhydrophobic copper mesh prepared by the chemical etching method and the in-situ growth method and the performance evaluation are introduced. The oxide layer on the surface of the copper mesh is first removed by pickling, and then immersed in FeCl3 solution for chemical etching to make the surface rough, stearic acid (SA) is used for in-situ growth to reduce the surface energy, a superhydrophobic oil-water separation copper mesh is obtained. The water contact angle (WCA) of the copper mesh is more than 160°. The copper mesh is chemically stable and can effectively adsorb floating oil and separate the oil-water mixture. After several oil-water separation experiments, the oil-water separation efficiency can still be above 98%. The effects of the concentration of FeCl3 and SA on the contact angle and oil-water separation efficiency are investigated, the results show that when the concentration of FeCl3 is 2% and SA is 1.5%, the WCA and oil-water separation efficiency are the largest. The research used a simple and environmentally friendly method to prepare the oil-water separation copper mesh, which has important application significance for water quality restoration.


2021 ◽  
Author(s):  
Prabunathan P ◽  
M. Alagar

Abstract The present work detailsabout the low temperature curingbehaviour of bio-benzoxazine (C-ddm) prepared using cardanol and diaminodiphenylmethane (ddm)in the presence of polyaniline (PANI). Interestingly, it was found that the curing temperature (Tp) of the benzoxazine monomer (C-ddm) has significantly reduced to 227 ºC from 271 ºC with the incorporation of 2wt% of PANI. The plausible curing mechanism of benzoxazine ring catalysed by PANI was also discussed. Further, the resulted PANI/poly(C-ddm) matrices possessa marginally improvedvalues of glass transisition temperature and char yield. Further, PANI/poly(C-ddm) coated cotton fabric was studied for its UV shielding and surface properties. Furthermore, the UV shielding and surface behaviours of PANI/poly(C-ddm) coated cotton fabrics were explored. The PANI/poly(C-ddm) coated cotton fabric delivered UPF rating as high as 50 + and water contact angle value of162°. In addition, the PANI/poly(C-ddm) coated cotton fabric wasverified for its oil-water separation behavior. It was observed that the PANI/poly(C-ddm) coated cotton fabric offered97.5 % separation efficiency with enhanced flux value of about 6450 L/m2h flux.Thus, the obtained results suggest that the PANI/poly(C-ddm) can be used some of the industrial and environmental surface protection applications.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Junyong Chen ◽  
Junhui Xiang ◽  
Xian Yue ◽  
Huaxin Li ◽  
Xianbo Yu

Few cases of hydrophobic materials synthesized in water have been reported. In this work, water, as the only solvent, is used to prepare a superhydrophobic sponge via a facile and environment-friendly route. The as-prepared sponge, namely silylated polyvinyl alcohol (PVA) sponge, exhibits superhydrophobic and superoleophilic characters. It has the static water contact angle (WCA) of 152 ± 1 and the static oil contact angle (OCA) of 0°, which can lead to excellent selectivity for oil-water separation. Besides, the methyltriethoxysilane (MTES) can form a stable mixed structure with the PVA skeleton, resulting in the rare shedding of polymethylsiloxane nanoparticles and the long-term stability for oil-water separation. Furthermore, the silylated sponge shows a high separation efficiency (>99.6%), removing oil up to 6200∼14000 times of its own mass. The findings demonstrated that the silylated superhydrophobic sponge can be a promising candidate in water treatment application.


Coatings ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 69 ◽  
Author(s):  
Yangyang Chen ◽  
Shengke Yang ◽  
Qian Zhang ◽  
Dan Zhang ◽  
Chunyan Yang ◽  
...  

In order to explore the effects of microstructures of membranes on superhydrophobic properties, it is critical, though, challenging, to study microstructures with different morphologies. In this work, a combination of chemical etching and oxidation was used and some copper meshes were selected for grinding. Two superhydrophobic morphologies could be successfully prepared for oil-water separation: a parabolic morphology and a truncated cone morphology. The surface morphology, chemical composition, and wettability were characterized. The results indicated that the water contact angle and the advancing and receding contact angles of the parabolic morphology were 153.6°, 154.6 ± 1.1°, and 151.5 ± 1.8°, respectively. The water contact angle and the advancing and receding contact angles of the truncated cone morphology were 121.8°, 122.7 ± 1.6°, and 119.6 ± 2.7°, respectively. The separation efficiency of the parabolic morphology for different oil-water mixtures was 97.5%, 97.2%, and 91%. The separation efficiency of the truncated cone morphology was 93.2%, 92%, and 89%. In addition, the values of the deepest heights of pressure resistance of the parabolic and truncated cone morphologies were 21.4 cm of water and 19.6 cm of water, respectively. This shows that the parabolic morphology had good separation efficiency, pressure resistance, and superhydrophobic ability compared with the truncated cone morphology. It illustrates that microstructure is one of the main factors affecting superhydrophobic properties.


Sign in / Sign up

Export Citation Format

Share Document