scholarly journals Improvement of the Heat-Dissipating Performance of Powder Coating with Graphene

Polymers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1321
Author(s):  
Fei Kung ◽  
Ming-Chien Yang

In this study, the epoxy powder was blended with graphene to improve its thermal conductivity and heat dissipation efficiency. The thermal conductivity of the graphene-loaded coating was increased by 167 folds. In addition, the emissivity of the graphene-loaded coating was 0.88. The epoxy powder was further coated on aluminum plate through powder coating process in order to study the effect on the performance of heat dissipation. In the case of natural convective heat transfer, the surface temperature of the graphene-loaded coated aluminum plate was 96.7 °C, which was 27.4 °C lower than that of bare aluminum plate (124.1 °C) at a heat flux of 16 W. In the case of forced convective heat transfer, the surface temperature decreased from 77.8 and 68.3 °C for a heat flux of 16 W. The decrease in temperature can be attributed to the thermal radiation. These results show that the addition of graphene nanoparticles in the coating can increase the emissivity of the aluminum plate and thus improving the heat dissipation.

2011 ◽  
Vol 110-116 ◽  
pp. 393-399
Author(s):  
S.M. Sohel Murshed ◽  
C.A. Nieto de Castro ◽  
M.J.V. Lourenço ◽  
M.L.M. Lopes ◽  
F.J.V. Santos

Nanofluids have attracted great interest from researchers worldwide because of their reported superior thermal performance and many potential applications. However, there are many controversies and inconsistencies in reported experimental results of thermal conductivity, convective heat transfer coefficient and critical heat flux of nanofluids. In this paper, two major features of nanofluids, which are boiling and convective heat transfer characteristics are presented besides critically reviewing recent research and development on these areas of nanofluids.


2021 ◽  
pp. 875608792110258
Author(s):  
Azhar Ali ◽  
Dil Nawaz Khan Marwat ◽  
Aamir Ali

Flows and heat transfer over stretching/shrinking and porous surfaces are studied in this paper. Unusual and generalized similarity transformations are used for simplifying governing equations. Current model includes all previous cases of stretched/shrunk flows with thermal effects discussed so far. Moreover, we present three different cases of thermal behavior (i) prescribed surface temperature (ii) Variable/uniform convective heat transfer at plat surface and (iii) prescribed variable/uniform heat flux. Stretching/shrinking velocity Uw(x), porosity [Formula: see text], heat transfer [Formula: see text], heat flux [Formula: see text] and convective heat transfer at surface are axial coordinate dependent. Boundary layer equations and boundary conditions are transformed into nonlinear ODEs by introducing unusual and generalized similarity transformations for the variables. These simplified equations are solved numerically. Final ODEs represent suction/injection, stretching/shrinking, temperature, heat flux, convection effects and specific heat. This current problem encompasses all previous models as special cases which come under the scope of above statement (title). The results of classical models are scoped out as a special case by assigning proper values to the parameters. Numerical result shows that the dual solutions can be found for different possible values of the shrinking parameter. A stability analysis is accomplished and apprehended in order to establish a criterion for determining linearly stable and physically compatible solutions. The significant features and diversity of the modeled equations are scrutinized by recovering the previous problems of fluid flow and heat transfer from a uniformly heated sheet of variable (uniform) thickness with variable (uniform) stretching/shrinking and injection/suction velocities.


Author(s):  
Jorge Saavedra ◽  
Venkat Athmanathan ◽  
Guillermo Paniagua ◽  
Terrence Meyer ◽  
Doug Straub ◽  
...  

Abstract The aerothermal characterization of film cooled geometries is traditionally performed at reduced temperature conditions, which then requires a debatable procedure to scale the convective heat transfer performance to engine conditions. This paper describes an alternative engine-scalable approach, based on Discrete Green’s Functions (DGF) to evaluate the convective heat flux along film cooled geometries. The DGF method relies on the determination of a sensitivity matrix that accounts for the convective heat transfer propagation across the different elements in the domain. To characterize a given test article, the surface is discretized in multiple elements that are independently exposed to perturbations in heat flux to retrieve the sensitivity of adjacent elements, exploiting the linearized superposition. The local heat transfer augmentation on each segment of the domain is normalized by the exposed thermal conditions and the given heat input. The resulting DGF matrix becomes independent from the thermal boundary conditions, and the heat flux measurements can be scaled to any conditions given that Reynolds number, Mach number, and temperature ratios are maintained. The procedure is applied to two different geometries, a cantilever flat plate and a film cooled flat plate with a 30 degree 0.125” cylindrical injection orifice with length-to-diameter ratio of 6. First, a numerical procedure is applied based on conjugate 3D Unsteady Reynolds Averaged Navier Stokes simulations to assess the applicability and accuracy of this approach. Finally, experiments performed on a flat plate geometry are described to validate the method and its applicability. Wall-mounted thermocouples are used to monitor the surface temperature evolution, while a 10 kHz burst-mode laser is used to generate heat flux addition on each of the discretized elements of the DGF sensitivity matrix.


Author(s):  
Liang-Han Chien ◽  
S.-Y. Pei ◽  
T.-Y. Wu

This study investigates the influence of the heat flux and mass velocity on convective heat transfer performance of FC-72 in a rectangular channel of 20mm in width and 2 mm in height. The heated side has either a smooth surface or a pin-finned surface. The inlet fluid temperature is maintained at 30°C. The total length of the test channel is 113 mm, with a heated length of 25mm. The flow rate varies between 80 and 960 ml/min, and the heat flux sets between 18 and 50 W/cm2. The experimental results show that the controlling variable is heat flux instead of flow rate because of the boiling activities in FC-72. At a fixed flow rate, the pin-finned surface yields up to 20% higher heat transfer coefficient and greater critical heat flux than those of a smooth surface.


Author(s):  
S. Kabelac ◽  
K. B. Anoop

Nanofluids are colloidal suspensions with nano-sized particles (<100nm) dispersed in a base fluid. From literature it is seen that these fluids exhibit better heat transfer characteristics. In our present work, thermal conductivity and the forced convective heat transfer coefficient of an alumina-water nanofluid is investigated. Thermal conductivity is measured by a steady state method using a Guarded Hot Plate apparatus customized for liquids. Forced convective heat transfer characteristics are evaluated with help of a test loop under constant heat flux condition. Controlled experiments under turbulent flow regime are carried out using two particle concentrations (0.5vol% and 1vol %). Experimental results show that, thermal conductivity of nanofluids increases with concentration, but the heat transfer coefficient in the turbulent regime does not exhibit any remarkable increase above measurement uncertainty.


Author(s):  
Shijo Thomas ◽  
C. B. Sobhan ◽  
Jaime Taha-Tijerina ◽  
T. N. Narayanan ◽  
P. M. Ajayan

Nanofluids are suspensions or colloids produced by dispersing nanoparticles in base fluids like water, oil or organic fluids, so as to improve their thermo-physical properties. Investigations reported in recent times have shown that the addition of nanoparticles significantly influence the thermophysical properties, such as the thermal conductivity, viscosity, specific heat and density of base fluids. The convective heat transfer coefficient also has shown anomalous variations, compared to those encountered in the base fluids. By careful selection of the parameters such as the concentration and the particle size, it has been possible to produce nanofluids with various properties engineered depending on the requirement. A mineral oil–boron nitride nanofluid system, where an increased thermal conductivity and a reduced electrical conductivity has been observed, is investigated in the present work to evaluate its heat transfer performance under natural convection. The modified mineral oil is produced by chemically dispersing boron nitride nanoparticles utilizing a one step method to obtain a stable suspension. The mineral oil based nanofluid is investigated under transient free convection heat transfer, by observing the temperature-time response of a lumped parameter system. The experimental study is used to estimate the time-dependent convective heat transfer coefficient. Comparisons are made with the base fluid, so that the enhancement in the heat transfer coefficient under natural convection situation can be estimated.


Sign in / Sign up

Export Citation Format

Share Document