scholarly journals Flexible Conductive Cellulose Network-Based Composite Hydrogel for Multifunctional Supercapacitors

Polymers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1369 ◽  
Author(s):  
Shaoqiu Ke ◽  
Zhiqi Wang ◽  
Kai Zhang ◽  
Fangchao Cheng ◽  
Jianping Sun ◽  
...  

With the continuous development of energy storage devices towards sustainability and versatility, the development of biomass-based multi-functional energy storage devices has become one of the important directions. In this study, a symmetric dual-function supercapacitor was constructed based on a cellulose network/polyacrylamide/polyaniline (CPP) composite hydrogel. The presented supercapacitor, with excellent electrochemical performance and an areal capacitance of 1.73 mF/cm2 at 5 mV/s, an energy density of 0.62 µW h/cm2 at a power density of 7.03 µW/cm2, a wide electrochemical window of 1.6 V and a promising cycling stability, can be achieved. The transmittance of the supercapacitor at 500 nm decreased by 9.6% after the electrification at 3 V, and the device can exhibit periodic transmittance change under the square potential input between 0.0 V and 3.0 V at regular intervals of 10 s. The present construction strategy provides a basis for the preparation of multifunctional devices with natural renewable materials and structures.

MRS Advances ◽  
2016 ◽  
Vol 1 (19) ◽  
pp. 1377-1382
Author(s):  
Uladzimir Novikau ◽  
Sviatlana Filipovich ◽  
Ihar Razanau

ABSTRACTThe present report is dedicated to a study of possible ways of increasing the energy density of the supercapacitor and thus, bridging the gap between the supercapacitor and the battery. Chemical functionalization of carbon nanomaterials, such as carbon nanotubes, activated carbon cloth, and activated carbon powder used as supercapacitor electrodes as well as novel aqueous electrolytes with the electrochemical window of up to 2 V are described. The hybrid approaches to energy storage mechanism in electrochemical energy storage devices are discussed. The first experimental results on the discussed hybrid energy storage devices are presented.


2017 ◽  
Vol 5 (5) ◽  
pp. 2204-2214 ◽  
Author(s):  
Enchao Hao ◽  
Wei Liu ◽  
Shuang Liu ◽  
Yuan Zhang ◽  
Huanlei Wang ◽  
...  

Based on the unique multilayered structure of ginkgo leaves, interconnected carbon nanosheets with rich micro/meso pores have been fabricated, showing excellent electrochemical performance in multiple energy storage devices.


2018 ◽  
Vol 2 (2) ◽  
pp. 381-391 ◽  
Author(s):  
Yongpeng Cui ◽  
Huanlei Wang ◽  
Xiaonan Xu ◽  
Yan Lv ◽  
Jing Shi ◽  
...  

N-Doped carbon nanomaterials can be easily synthesized by a one-step carbonization/activation method, which can achieve excellent electrochemical performance for multiple energy storage.


2020 ◽  
Vol 8 (31) ◽  
pp. 15358-15372
Author(s):  
Huicong Xia ◽  
Gan Qu ◽  
Hengbo Yin ◽  
Jianan Zhang

Atomically dispersed materials with maximized atom utilization, abundant active centers, and ultrahigh chemical reaction activity can accelerate the reaction kinetics in energy storage devices and have excellent electrochemical performance.


2020 ◽  
Vol 13 (10) ◽  
pp. 3527-3535 ◽  
Author(s):  
Nana Chang ◽  
Tianyu Li ◽  
Rui Li ◽  
Shengnan Wang ◽  
Yanbin Yin ◽  
...  

A frigostable aqueous hybrid electrolyte enabled by the solvation interaction of Zn2+–EG is proposed for low-temperature zinc-based energy storage devices.


2020 ◽  
Author(s):  
Yamin Zhang ◽  
Zhongpu Wang ◽  
Deping Li ◽  
Qing Sun ◽  
Kangrong Lai ◽  
...  

<p></p><p>Porous carbon has attracted extensive attentions as the electrode material for various energy storage devices considering its advantages like high theoretical capacitance/capacity, high conductivity, low cost and earth abundant inherence. However, there still exists some disadvantages limiting its further applications, such as the tedious fabrication process, limited metal-ion transport kinetics and undesired structure deformation at harsh electrochemical conditions. Herein, we report a facile strategy, with calcium gluconate firstly reported as the carbon source, to fabricate ultrathin porous carbon nanosheets. <a>The as-prepared Ca-900 electrode delivers excellent K-ion storage performance including high reversible capacity (430.7 mAh g<sup>-1</sup>), superior rate capability (154.8 mAh g<sup>-1</sup> at an ultrahigh current density of 5.0 A g<sup>-1</sup>) and ultra-stable long-term cycling stability (a high capacity retention ratio of ~81.2% after 4000 cycles at 1.0 A g<sup>-1</sup>). </a>Similarly, when being applied in Zn-ion capacitors, the Ca-900 electrode also exhibits an ultra-stable cycling performance with ~90.9% capacity retention after 4000 cycles at 1.0 A g<sup>-1</sup>, illuminating the applicable potentials. Moreover, the origin of the fast and smooth metal-ion storage is also revealed by carefully designed consecutive CV measurements. Overall, considering the facile preparation strategy, unique structure, application flexibility and in-depth mechanism investigations, this work will deepen the fundamental understandings and boost the commercialization of high-efficient energy storage devices like potassium-ion/sodium-ion batteries, zinc-ion batteries/capacitors and aluminum-ion batteries.</p><br><p></p>


Author(s):  
Dhanasekar Kesavan ◽  
Vimal Kumar Mariappan ◽  
Karthikeyan Krishnamoorthy ◽  
Sang-Jae Kim

In this study, we report a facile carbothermal method for the preparation of boron-oxy-carbide (BOC) nanostructures and explore their properties towards electrochemical energy storage devices.


Sign in / Sign up

Export Citation Format

Share Document