scholarly journals Thiol-Substituted Poly(2-oxazoline)s with Photolabile Protecting Groups—Tandem Network Formation by Light

Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1767
Author(s):  
Niklas Jung ◽  
Fiona Diehl ◽  
Ulrich Jonas

Herein, we present a novel polymer architecture based on poly(2-oxazoline)s bearing protected thiol functionalities, which can be selectively liberated by irradiation with UV light. Whereas free thiol groups can suffer from oxidation or other spontaneous reactions that degrade polymer performance, this strategy with masked thiol groups offers the possibility of photodeprotection on demand with spatio-temporal control while maintaining polymer integrity. Here, we exploit this potential for a tandem network formation upon irradiation with UV light by thiol deprotection and concurrent crosslinking via thiol-ene coupling. The synthesis of the novel oxazoline monomer 2-{2-[(2-nitrobenzyl)thio]ethyl}-4,5-dihydrooxazole (NbMEtOxa) carrying 2-nitrobenzyl-shielded thiol groups and its cationic ring-opening copolymerization at varying ratios with 2-ethyl-2-oxazoline (EtOxa) is described. The tandem network formation was exemplarily demonstrated with the photoinitator 2-hydroxy-2-methylpropiophenone (HMPP) and pentaerythritol tetraacrylate (PETA), a commercially available, tetrafunctional vinyl crosslinker. The key findings of the conducted experiments indicate that a ratio of ~10% NbMEtOxa repeat units in the polymer backbone is sufficient for network formation and in-situ gelation in N,N-dimethylformamide.

2021 ◽  
Author(s):  
Wenqi Wang ◽  
Zefeng Zhou ◽  
Xuanting Tang ◽  
Stephanie Moran ◽  
Jing Jin ◽  
...  

Degradable vinyl polymers by radical ring-opening polymerization have become a promising solution to the challenges caused by the widespread use of non-degradable vinyl plastics. However, achieving even distribution of labile functional groups in the backbone of degradable vinyl polymers remains challenging. Herein, we report a photocatalytic approach to truly random degradable vinyl copolymers with tunable main-chain composition via radical ring-opening cascade copolymerization (rROCCP). The rROCCP of the macrocyclic allylic sulfone and acrylates or acrylamides mediated by visible light at ambient temperature achieved near-unity reactivity ratios of both comonomers over the entire range of the comonomer compositions and afforded truly random vinyl copolymers with degradable units evenly distributed in the polymer backbone. Experimental and computational evidence revealed an unusual reversible inhibition of chain propagation by in situ generated sulfur dioxide, which was successfully overcome by reducing the solubility of sulfur dioxide in the reaction mixture. This study provided a powerful approach to truly random degradable vinyl copolymers with tunable main-chain labile functionalities and comparable thermal and mechanical properties to traditional non-degradable vinyl polymers.


2018 ◽  
Author(s):  
Elaine A. Kelly ◽  
Judith E. Houston ◽  
Rachel Evans

Understanding the dynamic self-assembly behaviour of azobenzene photosurfactants (AzoPS) is crucial to advance their use in controlled release applications such as<i></i>drug delivery and micellar catalysis. Currently, their behaviour in the equilibrium <i>cis-</i>and <i>trans</i>-photostationary states is more widely understood than during the photoisomerisation process itself. Here, we investigate the time-dependent self-assembly of the different photoisomers of a model neutral AzoPS, <a>tetraethylene glycol mono(4′,4-octyloxy,octyl-azobenzene) </a>(C<sub>8</sub>AzoOC<sub>8</sub>E<sub>4</sub>) using small-angle neutron scattering (SANS). We show that the incorporation of <i>in-situ</i>UV-Vis absorption spectroscopy with SANS allows the scattering profile, and hence micelle shape, to be correlated with the extent of photoisomerisation in real-time. It was observed that C<sub>8</sub>AzoOC<sub>8</sub>E<sub>4</sub>could switch between wormlike micelles (<i>trans</i>native state) and fractal aggregates (under UV light), with changes in the self-assembled structure arising concurrently with changes in the absorption spectrum. Wormlike micelles could be recovered within 60 seconds of blue light illumination. To the best of our knowledge, this is the first time the degree of AzoPS photoisomerisation has been tracked <i>in</i><i>-situ</i>through combined UV-Vis absorption spectroscopy-SANS measurements. This technique could be widely used to gain mechanistic and kinetic insights into light-dependent processes that are reliant on self-assembly.


Author(s):  
Ain Uddin ◽  
Weifan Sang ◽  
Yong Gao ◽  
Kyle Plunkett

The synthesis of poly(p-xylylene)s (PPXs) with sidechains containing alkyl bromide functionality, and their post-polymer modification, is described. The PPXs were prepared by a diimide hydrogenation of poly(p-phenylene vinylene)s (PPVs) that were originally synthesized by a Gilch polymerization. The polymer backbone reduction was carried out with hydrazine hydrate in toluene at 80 °C to provide polymers with the sidechain-containing bromide functionality intact. To demonstrate post-polymer modification of the sidechains, the resulting PPX polymers were modified with trimethylamine to form tetraalkylammonium ion functionality and were evaluated as anion conducting membranes. While PPX homopolymers containing tetralkylammonium ions were completely water soluble and not able to form valuable films, PPX copolymers containing mixed tetraalkylammonium ions and hydrophobic chains were capable of film formation and alkaline stability. In addition, an in situ crosslinking process that used N,N,N',N'-tetramethyl-1,6-hexanediamine during the tetraalkylammonium formation of brominated PPX polymers was also evaluated and gave reasonable films with conductivities of ~10 mS-cm-1.


2019 ◽  
Author(s):  
Ain Uddin ◽  
Weifan Sang ◽  
Yong Gao ◽  
Kyle Plunkett

The synthesis of poly(p-xylylene)s (PPXs) with sidechains containing alkyl bromide functionality, and their post-polymer modification, is described. The PPXs were prepared by a diimide hydrogenation of poly(p-phenylene vinylene)s (PPVs) that were originally synthesized by a Gilch polymerization. The polymer backbone reduction was carried out with hydrazine hydrate in toluene at 80 °C to provide polymers with the sidechain-containing bromide functionality intact. To demonstrate post-polymer modification of the sidechains, the resulting PPX polymers were modified with trimethylamine to form tetraalkylammonium ion functionality and were evaluated as anion conducting membranes. While PPX homopolymers containing tetralkylammonium ions were completely water soluble and not able to form valuable films, PPX copolymers containing mixed tetraalkylammonium ions and hydrophobic chains were capable of film formation and alkaline stability. In addition, an in situ crosslinking process that used N,N,N',N'-tetramethyl-1,6-hexanediamine during the tetraalkylammonium formation of brominated PPX polymers was also evaluated and gave reasonable films with conductivities of ~10 mS-cm-1.


2020 ◽  
Vol 154 (2) ◽  
pp. 135-153 ◽  
Author(s):  
Gabriel García Caballero ◽  
Donella Beckwith ◽  
Nadezhda V. Shilova ◽  
Adele Gabba ◽  
Tanja J. Kutzner ◽  
...  

Abstract The concept of biomedical significance of the functional pairing between tissue lectins and their glycoconjugate counterreceptors has reached the mainstream of research on the flow of biological information. A major challenge now is to identify the principles of structure–activity relationships that underlie specificity of recognition and the ensuing post-binding processes. Toward this end, we focus on a distinct feature on the side of the lectin, i.e. its architecture to present the carbohydrate recognition domain (CRD). Working with a multifunctional human lectin, i.e. galectin-3, as model, its CRD is used in protein engineering to build variants with different modular assembly. Hereby, it becomes possible to compare activity features of the natural design, i.e. CRD attached to an N-terminal tail, with those of homo- and heterodimers and the tail-free protein. Thermodynamics of binding disaccharides proved full activity of all proteins at very similar affinity. The following glycan array testing revealed maintained preferential contact formation with N-acetyllactosamine oligomers and histo-blood group ABH epitopes irrespective of variant design. The study of carbohydrate-inhibitable binding of the test panel disclosed up to qualitative cell-type-dependent differences in sections of fixed murine epididymis and especially jejunum. By probing topological aspects of binding, the susceptibility to inhibition by a tetravalent glycocluster was markedly different for the wild-type vs the homodimeric variant proteins. The results teach the salient lesson that protein design matters: the type of CRD presentation can have a profound bearing on whether basically suited oligosaccharides, which for example tested positively in an array, will become binding partners in situ. When lectin-glycoconjugate aggregates (lattices) are formed, their structural organization will depend on this parameter. Further testing (ga)lectin variants will thus be instrumental (i) to define the full range of impact of altering protein assembly and (ii) to explain why certain types of design have been favored during the course of evolution, besides opening biomedical perspectives for potential applications of the novel galectin forms.


2021 ◽  
Author(s):  
Gopal Avashthi ◽  
Man Singh

Ultrasonochemically driven graphene oxide (GrO) functionalization (f) with Sulfanilamide (SA) near-edge catalyzed heterogeneous graphene oxide (h-GrO) as economic scalable f-(SA)GrO is reported. The novel in-situ H2O association was subsequently aligned...


Author(s):  
Wei-Cheng Yuan ◽  
Jian Zuo ◽  
Shu-Pei Yuan ◽  
Jian-Qiang Zhao ◽  
Zhen-Hua Wang ◽  
...  
Keyword(s):  

The reaction of N-alkoxycarbonyl-O-tosylhydroxylamines with indol-2-ones in situ generated from 3-halooxindoles has been developed for divergently accessing 4-aminoquinolin-2-ones and N-Cbz-N’-arylureas in good to excellent yields.


Sign in / Sign up

Export Citation Format

Share Document