scholarly journals Directionally-Grown Carboxymethyl Cellulose/Reduced Graphene Oxide Aerogel with Excellent Structure Stability and Adsorption Capacity

Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2219
Author(s):  
Mengke Zhao ◽  
Sufeng Zhang ◽  
Guigan Fang ◽  
Chen Huang ◽  
Ting Wu

A novel three-dimensional carboxymethyl cellulose (CMC)/reduced graphene oxide (rGO) composite aerogel crosslinked by poly (methyl vinyl ether-co-maleic acid)/poly (ethylene glycol) system via a directional freezing technique exhibits high structure stability while simultaneously maintaining its excellent adsorption capacity to remove organic dyes from liquid. A series of crosslinked aerogels with different amounts of GO were investigated for their adsorption capacity of methylene blue (MB), which were found to be superb adsorbents, and the maximum adsorption capacity reached 520.67 mg/g with the incorporation of rGO. The adsorption kinetics and isotherm studies revealed that the adsorption process followed the pseudo-second-order model and the Langmuir adsorption model, and the adsorption was a spontaneous process. Furthermore, the crosslinked aerogel can be easily recycled after washing with dilute HCl solution, which could retain over 97% of the adsorption capacity after recycling five times. These excellent properties endow the crosslinked CMC/rGO aerogel’s potential in wastewater treatment and environment protection.

2020 ◽  
Vol 81 (10) ◽  
pp. 2163-2175 ◽  
Author(s):  
Fang Yuan ◽  
Lingzhi Yue ◽  
Han Zhao ◽  
Huifang Wu

Abstract In this paper, a study on the removal of imitated polystyrene (PS) microplastics in water was carried out based on the adsorption capacity of three-dimensional reduced graphene oxide (3D RGO). Scanning electron microscopy and X-ray diffractometry characterization showed that the freeze-dried 3D RGO formed a distinct porous spatial structure. Different experimental parameters, such as pH, ion concentration (C0), contact time (t), and temperature (T), were studied to investigate the PS microplastic adsorption performance of 3D RGO. The adsorption mechanism was mainly attributed to the strong π–π interaction between the carbon ring of 3D RGO and the benzene ring of PS microplastics. Sorption kinetic and isothermal data were obtained by the well-fitted Langmuir adsorption isotherm model and pseudo-second-order kinetic model. Furthermore, the result of thermodynamic analysis showed that the adsorption of PS microplastics was a spontaneous endothermic process. Under the optimal conditions of pH = 6, C0 = 600 mg/L, t = 120 min, and T = 26 °C, the maximum adsorption capacity of the prepared 3D RGO on PS microplastics was 617.28 mg/g. Furthermore, this method exhibited good feasibility in tap water and lake water.


2015 ◽  
Vol 3 (6) ◽  
pp. 983-989 ◽  
Author(s):  
Yue Zhang ◽  
Jia-Wei Liu ◽  
Xu-Wei Chen ◽  
Jian-Hua Wang

A three-dimensional amylopectin-graphene oxide framework (AP-rGO) exhibits excellent adsorption toward hemoglobin with a maximum adsorption capacity of 1010 mg g−1.


2019 ◽  
Vol 38 (5) ◽  
pp. 514-521 ◽  
Author(s):  
Jing Mao ◽  
Fang-Fang Wu ◽  
Wen-Hui Shi ◽  
Wen-Xian Liu ◽  
Xi-Lian Xu ◽  
...  

Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 681 ◽  
Author(s):  
Fabian Arias Arias ◽  
Marco Guevara ◽  
Talia Tene ◽  
Paola Angamarca ◽  
Raul Molina ◽  
...  

Recently, green-prepared oxidized graphenes have attracted huge interest in water purification and wastewater treatment. Herein, reduced graphene oxide (rGO) was prepared by a scalable and eco-friendly method, and its potential use for the removal of methylene blue (MB) from water systems, was explored. The present work includes the green protocol to produce rGO and respective spectroscopical and morphological characterizations, as well as several kinetics, isotherms, and thermodynamic analyses to successfully demonstrate the adsorption of MB. The pseudo-second-order model was appropriated to describe the adsorption kinetics of MB onto rGO, suggesting an equilibrium time of 30 min. Otherwise, the Langmuir model was more suitable to describe the adsorption isotherms, indicating a maximum adsorption capacity of 121.95 mg g−1 at 298 K. In addition, kinetics and thermodynamic analyses demonstrated that the adsorption of MB onto rGO can be treated as a mixed physisorption–chemisorption process described by H-bonding, electrostatic, and π − π interactions. These results show the potential of green-prepared rGO to remove cationic dyes from wastewater systems.


Molecules ◽  
2019 ◽  
Vol 24 (6) ◽  
pp. 1063
Author(s):  
Zuzana Koudelkova ◽  
Zuzana Bytesnikova ◽  
Kledi Xhaxhiu ◽  
Monika Kremplova ◽  
David Hynek ◽  
...  

The removal of selenium from superficial and waste water is a worldwide problem. The maximum limit according to the World Health Organization (WHO) for the selenium in the water is set at a concentration of 10 μg/L. Carbon based adsorbents have attracted much attention and recently demonstrated promising performance in removal of selenium. In this work, several materials (iron oxide based microparticles and graphene oxides materials) and their composites were prepared to remove Se(IV) from water. The graphene oxides were prepared according to the simplified Hummer’s method. In addition, the effect of pH, contact time and initial Se(IV) concentration was tested. An electrochemical method such as the differential pulse cathodic stripping voltammetry was used to determine the residual selenium concentration. From the experimental data, Langmuir adsorption model was used to calculate the maximum adsorption capacity. Graphene oxide particles modified by iron oxide based microparticles was the most promising material for the removal of Se(IV) from its aqueous solution at pH 2.0. Its adsorption efficiency reached more than 90% for a solution with given Se(IV) concentration, meanwhile its maximal recorded adsorption capacity was 18.69 mg/g.


2016 ◽  
Vol 253 (6) ◽  
pp. 1138-1143 ◽  
Author(s):  
Zhixing Gan ◽  
Junhong Guo ◽  
Yunsong Di ◽  
Rongrong Li ◽  
Shisong Huang

Sign in / Sign up

Export Citation Format

Share Document