scholarly journals Volatile Organic Compounds (VOCs) from Wood and Wood-Based Panels: Methods for Evaluation, Potential Health Risks, and Mitigation

Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2289 ◽  
Author(s):  
Tereza Adamová ◽  
Jaromír Hradecký ◽  
Miloš Pánek

Volatile organic compounds (VOCs) are contained in various construction materials and interior equipment. Their higher concentrations in the indoor air are associated with negative effects on human health and are disputed in terms of health risk, since people spend a considerable part of their lifetime indoors. Therefore, the presence of VOCs in indoor air is a case of concern regarding sick building syndrome (SBS). From a historical point of view, wood and wood-based panels represent a widely used material. Nevertheless, wood appears to be nowadays a product and a material of a sustainable future. Depending on wood extractives’ composition and an abundance of diverse wood species, different profiles of volatiles are emitted. In case of wood-based panels, the impact of adhesives and additives that are essentially applied aiming to adjust the panels’ properties is even enriching this cocktail of chemicals. This paper comprises the issue of VOCs emitted from wood and wood-based panels. The most abundant VOCs were summarized. The options of VOCs for analytical determination from these matrixes are described with their benefits and limitations.

Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 806
Author(s):  
Ozge Cemiloglu Ulker ◽  
Onur Ulker ◽  
Salim Hiziroglu

Volatile organic compounds (VOCs) are the main source influencing the overall air quality of an environment. It is a well-known fact that coated furniture units, in the form of paints and varnishes, emit VOCs, reducing the air quality and resulting in significant health problems. Exposure time to such compounds is also an important parameter regarding their possible health effects. Such issues also have a greater influence when the exposure period is extended. The main objective of this study was to review some of the important factors for the emission of VOCs from coated furniture, from the perspective of material characteristics, as well as health concerns. Some methods for controlling VOC emissions to improve indoor air quality, from the point of view recent regulations and suggestions, are also presented in this work.


2022 ◽  
Vol 7 ◽  
Author(s):  
Nahla Al Qassimi ◽  
Chuloh Jung

Due to hot desert weather, residents of the United Arab Emirates (UAE) spend 90% of their time indoors, and the interior environment of the newly built apartments with inappropriate material and ventilation is causing sick building syndrome (SBS), faster than in any other country. NASA studies on indoor air pollutants indicate that the usage of 15–18 air-purifying plants in 18–24 cm diameter containers can clean the air in an average 167.2 m2 house (approximately one plant per 9.2 m2). This study investigates the effect of three different types of air-purifying plants, Pachira aquatica, Ficus benjamina, and Aglaonema commutatum, in reducing volatile organic compounds (VOCs) and formaldehyde (CH2O) in hot desert climate. An experiment is performed in which the CH2O and VOCs concentrations are measured in two laboratory spaces (Room 1 and Room 2). Different volumes (5 and 10% of the laboratory volume) of target plants are installed in Room 1, whereas Room 2 is measured under the same conditions without plants for comparison. The results show that the greater the planting volume (10%), the greater is the reduction effect of each VOCs. In summer in hot desert climate, the initial concentration (800 µg/cm3) of CH2O and VOCs is higher, and the reduction amount is higher (534.5 µg/cm3) as well. The reduction amount of CH2O and toluene (C7H8) is particularly high. In the case of C7H8, the reduction amount (45.9 µg/cm3) is higher in summer with Aglaonema commutatum and Ficus benjamina. It is statistically proven that Ficus benjamina is most effective in reducing CH2O and C7H8 in an indoor space in hot desert climate. The findings of this study can serve as basic data for further improving the indoor air quality using only air-purifying plants in hot desert climate of the United Arab Emirates.


Nanomaterials ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1965
Author(s):  
Alexandru Enesca ◽  
Cristina Cazan

The impact of volatile organic compounds (VOCs) on indoor air quality and, furthermore, on human health is still a subject of research investigations considering the large increase in forms of cancer and related diseases. VOCs can be 10 times higher in indoor air concentrations then that of the outdoors, as a consequence of emissions from electronics, building materials and consumer goods. Direct transformation of VOCs in mineralization products seems to be an alternative to reduce indoor air contaminants. The advantage of photocatalysis implementation in indoor air treatment is given by the absence of additional chemicals (such as H2O2) and waste. The present mini-review presents a comparative study on VOCs photocatalytic removal considering the photocatalyst composition, morphology and specific surface. The sheet-like morphology seems to provide a higher number of active sites which may contribute to oxidative reactions. The insertion of materials able to increase light absorbance or to mediate the charge carrier’s transport will have a beneficial impact on the overall photocatalytic efficiency. Additionally, surface chemistry must be considered when developing photocatalysts for certain gas pollutants in order to favor molecule absorbance in the interfacial region. An energy consumption perspective is given based on the light intensity and irradiation period.


2020 ◽  
Vol 70 (12) ◽  
pp. 4145-4152

Indoor air quality (IAQ) remains a very important issue because it can significantly affect people’s health, comfort and productivity. Volatile organic compounds (VOCs) comprise an important group of chemicals that are commonly present in indoor air. They are related to the sick building syndrome (SBS) and exposure to VOCs is of considerable concern due to their potential chronic and acute health outcomes which includes eye irritation, nose and throat discomfort, headache, allergic skin reaction, nausea, fatigue, or dizziness. Most of the times the effects of VOCs on human health are amplified by indoor conditions such as temperature and humidity. The paper presents the findings of the analysis of the relationship between total volatile organic compounds (TVOC) concentrations and their influencing factors like indoor comfort parameters (temperature and relative humidity) and the type of indoor spaces (offices, residential and educational). Keywords: TVOC concentrations, indoor comfort parameters, Pearson correlation coefficients


Author(s):  
Norimichi Suzuki ◽  
Hiroko Nakaoka ◽  
Masamichi Hanazato ◽  
Yoshitake Nakayama ◽  
Kayo Tsumura ◽  
...  

Recently, people have become increasingly aware of potential health issues related to indoor environments. In this study, we measure the concentrations of various volatile organic compounds, carbonyl compounds, and semi-volatile organic compounds, as well as the ventilation rates, in 49 new houses with light-gauge steel structures one week after completion. The proper indoor air quality of new residential environments can be ensured by characterizing people’s exposure to certain chemicals and assessing future risks. Our results show that the concentrations of the measured compounds were lower than the guideline values set by the Ministry of Health, Labour and Welfare of Japan, and would continue to decrease. However, we observed that unregulated compounds, assumed to be substitutes for regulated solvents, contributed substantially to the total volatile organic compounds. To reduce indoor chemical exposure risks, the concentrations of these unregulated compounds should also be minimized. In addition, their sources need to be identified, and manufacture and use must be monitored. We believe it is important to select low-emission building materials for reducing residents’ exposure to indoor chemicals.


2018 ◽  
Vol 146 ◽  
pp. 03001
Author(s):  
Ingrid Juhasova Senitkova

The building design and material selection has to respect the environmental requirements of indoor air quality and indoor hygiene parameters. As the first stage of building design is the most important for final indoor air quality more and more by clear constructional architecture the benefit of environmental safety, good indoor air quality for health and productivity are dominant. Nowadays the interior surface materials have received greatest attention as sources of indoor air pollution. The major pollutants in indoor air are volatile organic compounds emitted from materials and building products. Volatile organic compounds, or VOCs, are among the most complex and troubling indoor air pollutants. Manufactured and synthesized products often release large quantities of VOCs, some of the compounds they release, such as benzene, styrene, formaldehyde, and toluene, may be irritating, toxic, or even carcinogenic. VOCs emitted can become attached to other surfaces in the space, especially fabrics, and then be re-emitted over time. The impact of interior surface materials on air quality and indoor hygiene is discussed within the paper. The building design concerning to heath of occupants and hygienic performance regime can be realized only by interdisciplinary team of professionals respecting the environmental building and indoor design.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 286
Author(s):  
Dorina Camelia Ilieș ◽  
Florin Marcu ◽  
Tudor Caciora ◽  
Liliana Indrie ◽  
Alexandru Ilieș ◽  
...  

Poor air quality inside museums is one of the main causes influencing the state of conservation of exhibits. Even if they are mostly placed in a controlled environment because of their construction materials, the exhibits can be very vulnerable to the influence of the internal microclimate. As a consequence, museum exhibits must be protected from potential negative effects. In order to prevent and stop the process of damage of the exhibits, monitoring the main parameters of the microclimate (especially temperature, humidity, and brightness) and keeping them in strict values is extremely important. The present study refers to the investigations and analysis of air quality inside a museum, located in a heritage building, from Romania. The paper focuses on monitoring and analysing temperature of air and walls, relative humidity (RH), CO2, brightness and particulate matters (PM), formaldehyde (HCHO), and total volatile organic compounds (TVOC). The monitoring was carried out in the Summer–Autumn 2020 Campaign, in two different exhibition areas (first floor and basement) and the main warehouse where the exhibits are kept and restored. The analyses aimed both at highlighting the hazard induced by the poor air quality inside the museum that the exhibits face. The results show that this environment is potentially harmful to both exposed items and people. Therefore, the number of days in which the ideal conditions in terms of temperature and RH are met are quite few, the concentration of suspended particles, formaldehyde, and total volatile organic compounds often exceed the limit allowed by the international standards in force. The results represent the basis for the development and implementation of strategies for long-term conservation of exhibits and to ensure a clean environment for employees, restorers, and visitors.


Sign in / Sign up

Export Citation Format

Share Document