scholarly journals A Critical Review on Metal-Organic Frameworks and Their Composites as Advanced Materials for Adsorption and Photocatalytic Degradation of Emerging Organic Pollutants from Wastewater

Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2648
Author(s):  
Zakariyya Uba Zango ◽  
Khairulazhar Jumbri ◽  
Nonni Soraya Sambudi ◽  
Anita Ramli ◽  
Noor Hana Hanif Abu Bakar ◽  
...  

Water-borne emerging pollutants are among the greatest concern of our modern society. Many of these pollutants are categorized as endocrine disruptors due to their environmental toxicities. They are harmful to humans, aquatic animals, and plants, to the larger extent, destroying the ecosystem. Thus, effective environmental remediations of these pollutants became necessary. Among the various remediation techniques, adsorption and photocatalytic degradation have been single out as the most promising. This review is devoted to the compilations and analysis of the role of metal-organic frameworks (MOFs) and their composites as potential materials for such applications. Emerging organic pollutants, like dyes, herbicides, pesticides, pharmaceutical products, phenols, polycyclic aromatic hydrocarbons, and perfluorinated alkyl substances, have been extensively studied. Important parameters that affect these processes, such as surface area, bandgap, percentage removal, equilibrium time, adsorption capacity, and recyclability, are documented. Finally, we paint the current scenario and challenges that need to be addressed for MOFs and their composites to be exploited for commercial applications.

2015 ◽  
Vol 3 (45) ◽  
pp. 22484-22506 ◽  
Author(s):  
Elton M. Dias ◽  
Camille Petit

A comprehensive and critical analysis on the use of metal–organic frameworks for the adsorption and photocatalytic degradation of organics in water, as well as H2production.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Qing Luo ◽  
Zhen Ding ◽  
Huamin Sun ◽  
Zhen Cheng ◽  
Naien SHI ◽  
...  

Ultrathin two-dimensional (2D) metal-organic framework (MOF) nanosheets are prosperous advanced materials due to their particularly thin thickness and exposed active sites. The difficulty in the controlled synthesis of 2D MOF...


RSC Advances ◽  
2017 ◽  
Vol 7 (17) ◽  
pp. 10415-10423 ◽  
Author(s):  
Yu Wu ◽  
Jian Wu ◽  
Zhidong Luo ◽  
Jun Wang ◽  
Yulong Li ◽  
...  

Two new MOFs show 3D 2-fold interpenetrating 4-connected networks and could be a prospective candidate for developing the luminescence sensors and the photocatalysis due to their highly stabilities.


2016 ◽  
Vol 16 (4) ◽  
pp. 2309-2316 ◽  
Author(s):  
Ya-Pan Wu ◽  
Xue-Qian Wu ◽  
Jian-Fang Wang ◽  
Jun Zhao ◽  
Wen-Wen Dong ◽  
...  

2021 ◽  
Vol 45 (7) ◽  
pp. 3432-3440
Author(s):  
Yu Xin ◽  
Jun Zhou ◽  
Yong Heng Xing ◽  
Feng Ying Bai ◽  
Li Xian Sun

Seven 3D metal-organic frameworks have been designed and synthesized by the hydrothermal synthetic method based on the ligand 5-aminoisophthalic acid. Complexes 1-4 have better photocatalytic degradation properties for dyes CV.


Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2869 ◽  
Author(s):  
Iván Taima-Mancera ◽  
Priscilla Rocío-Bautista ◽  
Jorge Pasán ◽  
Juan Ayala ◽  
Catalina Ruiz-Pérez ◽  
...  

Four metal-organic frameworks (MOFs), specifically UiO-66, UiO-66-NH2, UiO-66-NO2, and MIL-53(Al), were synthesized, characterized, and used as sorbents in a dispersive micro-solid phase extraction (D-µSPE) method for the determination of nine pollutants of different nature, including drugs, phenols, polycyclic aromatic hydrocarbons, and personal care products in environmental waters. The D-µSPE method, using these MOFs as sorbents and in combination with high-performance liquid chromatography (HPLC) and diode-array detection (DAD), was optimized. The optimization study pointed out to UiO-66-NO2 as the best MOF to use in the multi-component determination. Furthermore, the utilization of isoreticular MOFs based on UiO-66 with the same topology but different functional groups, and MIL-53(Al) to compare with, allowed us for the first time to evaluate the influence of such functionalization of the ligand with regards to the efficiency of the D-µSPE-HPLC-DAD method. Optimum conditions included: 20 mg of UiO-66-NO2 MOF in 20 mL of the aqueous sample, 3 min of agitation by vortex and 5 min of centrifugation, followed by the use of only 500 µL of acetonitrile as desorption solvent (once the MOF containing analytes was separated), 5 min of vortex and 5 min of centrifugation. The validation of the D-µSPE-HPLC-DAD method showed limits of detection down to 1.5 ng·L−1, average relative recoveries of 107% for a spiked level of 1.50 µg·L−1, and inter-day precision values with relative standard deviations lower than 14%, for the group of pollutants considered.


Sign in / Sign up

Export Citation Format

Share Document