scholarly journals Effects of Overlap Length on Flammability and Fire Hazard of Vertical Polymethyl Methacrylate (PMMA) Plate Array

Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2826 ◽  
Author(s):  
Weiguang An ◽  
Kaiyang Hu ◽  
Tao Wang ◽  
Lujun Peng ◽  
Song Li ◽  
...  

Polymethyl methacrylate (PMMA) plates are widely used in buildings or factories for natural lighting. Commonly PMMA plates are installed as a discrete array. However, PMMA plates are very susceptible to fire. Therefore, experimental study on flammability and fire hazard of vertical PMMA plate array with different overlap length (D) was conducted in this work. The average flame height (Hf) increases first and then decreases with an increase in the overlap length, and reaches the maximum when D = 40 mm. The discrete flame spread speed (Vf) also rises first and then drops with the increase of D, which is mainly due to the heat transfer from the PMMA flame to the next plate. A model for predicting the flame spread rate of discrete PMMA array is established. The predicted results are consistent with experimental ones, with a predicted error smaller than 15%. The average temperature of flame zone rises first and then drops as D increases, reaching the maximum when D = 40 mm. This leads to the same changing trend of radiative heat flux. Results obtained in this work provide a reference for fire hazard evaluation and fire safety design of PMMA plates employed in buildings or industrial sites.

Polymers ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 167
Author(s):  
Weiguang An ◽  
Lujun Peng ◽  
Minglun Cai ◽  
Kaiyang Hu ◽  
Song Li ◽  
...  

Polymethyl methacrylate plates are widely applied to buildings, producing significant fire hazards. It lacks a theoretical basis for the fire risk assessment of polymethyl methacrylate in concave building facades. Therefore, experimental methods are used to investigate combustion characteristics of discrete polymethyl methacrylate plates in a concave building facade. Influences of fuel coverage and structure factor are investigated, which is scant in previous works. When structure factor is invariable, average flame height increases first and then decreases as fuel coverage increases, and the turning point is between 0.64 and 0.76. In total, three different patterns of pyrolysis front propagation are first observed for different fuel coverages. Flame spread rate first increases and then decreases as fuel coverage rises, and the turning point is also between 0.64 and 0.76. When fuel coverage is invariable, the flame spread rate first increases and then decreases with increasing structure factor, and the turning point is 1.2. A model for predicting the flame spread rate of discrete polymethyl methacrylate is also developed. The predicted values are consistent with experimental results. Fuel spread rate of discrete polymethyl methacrylate rises as the fuel coverage increases. The above results are beneficial for thermal hazard evaluation and fire safety design of polymethyl methacrylate used in buildings.


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2789
Author(s):  
Weiguang An ◽  
Yanhua Tang ◽  
Kai Liang ◽  
Tao Wang ◽  
Yang Zhou ◽  
...  

Polyvinyl chloride (PVC) is widely applied in cables as insulation materials, which are vital for operation and control of industrial processes. However, PVC cables fires frequently occur, arousing public concern. Therefore, experimental methods are used to study flammability and flame-spread characteristics of PVC cable in this paper. Influences of cable structure and number are investigated, which is scanty in previous works. As cable core number of single cable or cable number of multiple cables rises, average flame height and width increase while the increment decreases. Formulas concerning dimensionless flame height and single cable diameter (or total width of multiple cables) are obtained. The former is negatively correlated with the latter. For single cable, convective heat transfer is dominant, and flame-spread rate decreases as cable core number increases. Cable maximum temperature, which drops first and then rises as cable core number increases, is observed in the cable core area. For multiple cable, the flame-spread rate increases as cable number increases. As the cable number rises, the length of pyrolysis and combustion zone increases while the maximum temperature of cable surface decreases. This work is beneficial to fire hazard evaluation and safety design of PVC cables.


2017 ◽  
Vol 23 (4) ◽  
pp. 455-463 ◽  
Author(s):  
Weigang YAN ◽  
Lin JIANG ◽  
Weiguang AN ◽  
Yang ZHOU ◽  
Jinhua SUN

Buildings have U-shape façade designs for certain purposes such as lighting. However, such designs may lead to a higher fire hazard. In this paper, large scale experiments of upward flame spread over XPS insulation material were conducted to investigate the fire hazard of building’s U-shape façade wall geometry. Comparison to previous labora­tory scale experiments were also presented. Theoretical analysis was performed to reveal the mechanism of the U-shape geometry’s influences. It is found that such geometry design would increase the fire hazard of buildings: flame spread rate and flame height increased with U-shape’s geometrical factor. The results agreed with theoretical analysis. It is ex­pected that the buildings’ U-shape façade wall geometry would greatly benefit flame spread for full scale applications and increase the fire hazard. Thus engineers should be careful with such façade wall designs, especially for residential building designs.


2014 ◽  
Vol 664 ◽  
pp. 199-203 ◽  
Author(s):  
Wei Guang An ◽  
Lin Jiang ◽  
Jin Hua Sun ◽  
K.M. Liew

An experimental study on downward flame spread over extruded polystyrene (XPS) foam at a high elevation is presented. The flame shape, flame height, mass loss rate and flame spread rate were measured. The influences of width and high altitude were investigated. The flame fronts are approximately horizontal. Both the intensity of flame pulsation and the average flame height increase with the rise of sample width. The flame spread rate first drops and then rises with an increase in width. The average flame height, mass loss rate and flame spread rate at the higher elevation is smaller than that at a low elevation, which demonstrates that the XPS fire risk at the higher elevation area is lower. The experimental results agree well with the theoretical analysis. This work is vital to the fire safety design of building energy conservation system.


2018 ◽  
Vol 89 (15) ◽  
pp. 3189-3200 ◽  
Author(s):  
Yunji Gao ◽  
Guoqing Zhu ◽  
Hui Zhu ◽  
Weiguang An ◽  
Yu Xia

In this paper, moisture content effects on horizontal flame spread were experimentally investigated using 0.245 mm thick, 28 cm tall and 28 cm wide untreated cotton fabric sheets with various moisture contents varying from 0 to 34%. The pyrolysis spread rates, flame heights and ignition times were obtained and analyzed. The corresponding results are as follows: as moisture content increases, the flame height and spread rate first increase and then decrease. In contrast, the ignition time shows an opposite trend with moisture content. The extreme values are observed in cases of 2% moisture content samples. Moreover, the flame spread rate in the warp direction is larger than that in the weft direction. For horizontal flame spread, the moisture content has the effect of consuming part of the heat feedback, which can play a role in reducing the flame spread rate; simultaneously, the moisture content can enlarge flame size and increase the convective heat transfer coefficient, thereby resulting in an increase in flame spread rate. The non-monotonous trend in pyrolysis spread rate is the result of competition between these effects.


2018 ◽  
Vol 247 ◽  
pp. 00029
Author(s):  
Bozena Kukfisz

The paper presents classification criteria for flammability parameters of sprayed and foamed aerosols [1-3]. Tests were carried out to determine such flammability criteria, as combustion heat of a substance, distance of sprayed aerosol from the ignition source at which ignition takes place, time equivalent necessary for ignition to take place and the density of deflagration for sprayed aerosols. For foamed aerosols the determined parameters comprised combustion heat parameters for a substance, the maximum flame height and the flame retention time. Based on the obtained flammability it may be unequivocally stated that aerosol products pose a serious fire hazard. Aerosols selected for testing pose a serious explosion hazard within a confined space. It seems that from among all the tested aerosols the most hazardous products in this respect comprise solvent and stain remover and DW 40. Within a space of 200 dm3 those products required 3 and 4 seconds of aerosol spraying respectively until the moment of initiating an explosion. Aerosol products in which use was made of propane-butane a carrier gas characterise by very similar flammability and explosivitiy parameters within a closed or confined space.


1993 ◽  
Vol 11 (4) ◽  
pp. 287-295 ◽  
Author(s):  
M.A. Delichatsios

We present and demonstrate the application of a systematic methodology for predicting fire spread and growth and for a relative fire hazard classification of materials for any scale and fire environment. This methodol ogy consists of three steps: (1) select laboratory test methods to perform flam mability measurements; (2) based on these measurements, obtain key flamma bility material properties which are precisely defined in this work; and (3) use these properties in a mathematical model of fire spread and growth to predict fire hazards. The complementary test methods we have selected and used are: (a) a general flammability test apparatus (such as NIST or FMRC) [1,2] modified to also provide pyrolysis measurements in an inert N2 atmosphere; (b) the Limited Oxygen Index (LOI) apparatus, which is used here as a tool for ob taining properties needed for creeping flame spread and extinction, including vitiated environments; and (c) a solid material smoke-point height apparatus [8], which is used to characterize the smokiness of the burning material needed to determine the radiation and smoke yield for arbitrary fire situations (wall fires, pool fires or ceiling fires) [8]. The use and proper interpretation of the Limited Oxygen Index apparatus can replace the LIFT [10] apparatus for deter mining in a more accurate and direct way the material properties required for creeping (vertical downward, lateral, horizontal) flame spread. The present methodology has been compared well with experiments in this work and else where [9], and it has been used to predict critical conditions for fire spread [11], not empirically as it is usually done, but based on first principles of fire spread, fire growth and burning, together with material flammability properties syste matically deduced from small-scale test measurements.


2013 ◽  
Vol 401-403 ◽  
pp. 767-770
Author(s):  
Gui Hong Wu ◽  
Yi Qiang Wu ◽  
Yun Chu Hu ◽  
Xiao Dan Zhu

To study the effect of sample width on flame spread characteristics, a series of laboratory-scale experiments were conducted employing eucalyptus wood with width from 3 to 7 cm. Flame dimension, flame spread rate and mass loss rate were obtained. The relationship between these flame spread characteristics and sample width was explored. Both the dimensionless average flame height and depth vary as the-n power of sample width. With the increase of sample width, both the flame spread rate and mass loss rate first decrease and then rise. The minimum values appear when sample width measures 6 cm.


Sign in / Sign up

Export Citation Format

Share Document