scholarly journals New Functionalized Ionic Liquids Based on POSS for the Detection of Fe3+ Ion

Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 196
Author(s):  
Wensi Li ◽  
Shengyu Feng

This study reports a novel series of imidazolium ionic liquids (ILs) based on polyhedral oligomeric silsesquioxanes (POSS) towards effective detection of metal ions, especially Fe3+ ion. 1H, 13C, 29Si NMR, high resolution mass spectra (HRMS) and Fourier transform infrared spectra (FTIR) were applied to confirm the structures of the ILs based on POSS (ILs-POSS). The three ILs-POSS were synthesized via a green chemistry approach—a thiol-ene “click” reaction without metal ions as catalysts. Furthermore, the spherical vesicle structures of the ILs-POSS were observed and caused by self-assembly behaviors. Through comprehensive characterizations, these ILs-POSS have performed excellent thermal stabilities and low glass transition temperatures. In addition, we found it very meaningful that the limits of detection (LODs) of the three ILs-POSS for the detection of the Fe3+ ion were 7.91 × 10−8 M, 1.2 × 10−7 M, and 1.2 × 10−7 M, respectively. These data illustrate that these ILs-POSS have great potential for the detection of the Fe3+ ion. In conclusion, this study not only prepared novel ILs-POSS, but also provided new materials as fluorescent sensors in the detection of Fe3+.

Polymers ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 917 ◽  
Author(s):  
Wensi Li ◽  
Dengxu Wang ◽  
Dongdong Han ◽  
Ruixue Sun ◽  
Jie Zhang ◽  
...  

In this paper, two different models of hybrid ionic liquids (ILs) based on polyhedral oligomeric silsesquioxanes (POSSs) have been prepared. Additionally, these ILs based on POSSs (ILs-POSSs) exhibited excellent thermal stabilities and low glass transition temperatures. 1H, 13C, and 29Si nuclear magnetic resonance (NMR) spectroscopy, Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) were used to confirm the structures of the IL-POSSs. Furthermore, the spherical vesicle structures of two IL-POSSs were observed and were caused by self-assembly behaviors. In addition, we found it very meaningful that these two ILs showed lower detection limits of 2.57 × 10−6 and 3.98 × 10−6 mol/L for detecting picric acid (PA). Moreover, the experimental data revealed that the products have high sensitivity for detecting a series of nitroaromatic compounds—including 4-nitrophenol, 2,4-dinitrophenol, and PA—and relatively comprehensive explosive detection in all of the tests of IL-POSSs with nitroaromatic compounds thus far. Additionally, the data indicate that these two new ILs have great potential for the detection of explosives. Therefore, our work may provide new materials including ILs as fluorescent sensors in detecting nitroaromatic explosives.


Molecules ◽  
2019 ◽  
Vol 24 (24) ◽  
pp. 4553 ◽  
Author(s):  
Ryoya Hasebe ◽  
Yoshiro Kaneko

Polyhedral oligomeric silsesquioxanes (POSSs), Am-POSS(x,y), prepared by hydrolytic condensation, contains two types of ammonium side-chain groups, where the numbering of x and y represents the type of ammonium ions in the POSS structure, corresponding to primary (1), secondary (2), tertiary (3), and quaternary (4) ammonium ions. Mixtures of the two starting materials selected from organotrialkoxysilanes containing primary, secondary, and tertiary amines and a quaternary ammonium salt [(RO)3Si(CH2)3R′, R = CH3 or CH2CH3, R′ = NH2, NHCH3, N(CH3)2, and N(CH3)3Cl] were dissolved in dimethyl sulfoxide (DMSO). The hydrolytic condensation was performed in the presence of bis(trifluoromethansulfonyl)imide (HNTf2) and water. All Am-POSS(x,y) structures consisted of a cage-type octamer (T8-POSS), as confirmed by 29Si NMR spectrometry and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analyses indicated that Am-POSS(1,3), Am-POSS(1,4), and Am-POSS(2,4) had amorphous structures. These POSSs have two or three differences in the number of methyl groups between the two types of ammonium side-chains. Conversely, Am-POSS(1,2), Am-POSS(2,3), and Am-POSS(3,4) had crystalline structures. The difference in the number of methyl groups between the two types of ammonium side-chains in these POSSs is only one. Therefore, the crystalline-amorphous structure of Am-POSS(x,y) is controlled by the side-chain group combinations. Furthermore, Am-POSS(1,3), Am-POSS(1,4), and Am-POSS(2,4) are protic ionic liquids with relatively low flow temperatures.


2017 ◽  
Vol 70 (2) ◽  
pp. 126 ◽  
Author(s):  
Mark P. Del Borgo ◽  
Ketav Kulkarni ◽  
Marie-Isabel Aguilar

The unique structures formed by β-amino acid oligomers, or β-peptide foldamers, have been studied for almost two decades, which has led to the discovery of several distinctive structures and bioactive molecules. Recently, this area of research has expanded from conventional peptide drug design to the formation of assemblies and nanomaterials by peptide self-assembly. The unique structures formed by β-peptides give rise to a set of new materials with altered properties that differ from conventional peptide-based materials; such new materials may be useful in several bio- and nanomaterial applications.


2015 ◽  
Vol 22 (2) ◽  
pp. 486-490 ◽  
Author(s):  
Joseph P. Byrne ◽  
Miguel Martínez-Calvo ◽  
Robert D. Peacock ◽  
Thorfinnur Gunnlaugsson

2016 ◽  
Vol 69 (11) ◽  
pp. 1254 ◽  
Author(s):  
Jiequn Wu ◽  
Tianxiang Yin ◽  
Shaoxiong Shi ◽  
Weiguo Shen

The systematic investigation of the aggregation behaviours of newly synthesised surface-active ionic liquids 1-alkyl-3-methylimidazolium bis(2-ethylhexyl)sulfosuccinate ([Cnmim][AOT], n = 2, 3, 5, 6, 7) by various techniques is reported. The critical aggregation concentrations (CACs) and the standard Gibbs free energies of aggregation () were determined from measurements on conductivity, fluorescence, and surface tension, which suggested a stronger self-assembly ability in the bulk solution for [Cnmim][AOT] surfactants with longer alkyl chain cations. An interesting structure transition driven by the penetration of the imidazolium cation into the aggregate when n > 4 was found by analysis of the variations of the values of CAC, , the degree of counter ion binding (β), and the micropolarity (I1/I3) immediately after the CAC with changing alkyl chain length of the imidazolium cation, which was further confirmed by 1H NMR measurements.


2014 ◽  
Vol 578 ◽  
pp. 59-67 ◽  
Author(s):  
Zhimin Xue ◽  
Yuwei Zhang ◽  
Xiao-qin Zhou ◽  
Yuanyuan Cao ◽  
Tiancheng Mu

2017 ◽  
Vol 26 (2) ◽  
pp. 685-691 ◽  
Author(s):  
Stefano Caporali ◽  
Stefano M. Martinuzzi ◽  
Peter Von Czarnecki ◽  
Thomas J. S. Schubert ◽  
Ugo Bardi
Keyword(s):  

2016 ◽  
Vol 37 (14) ◽  
pp. 1207-1211 ◽  
Author(s):  
Yumi Kobayashi ◽  
Yuzo Kitazawa ◽  
Takahiro Komori ◽  
Kazuhide Ueno ◽  
Hisashi Kokubo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document