scholarly journals Multiresponsive Cellulose Nanocrystal Cross-Linked Copolymer Hydrogels for the Controlled Release of Dyes and Drugs

Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1219
Author(s):  
Yuchen Jiang ◽  
Guihua Li ◽  
Chenyu Yang ◽  
Fangong Kong ◽  
Zaiwu Yuan

Multiresponsive hydrogels have attracted tremendous interest due to their promising applications in tissue engineering, wearable devices, and flexible electronics. In this work, we report a multiresponsive upper critical solution temperature (UCST) composite hydrogel based on poly (acrylic acid-co-acrylamide), PAAc-co-PAAm, sequentially cross-linked by acid-hydrolysis cellulose nanocrystals (CNCs). Scanning electron microscopy (SEM) observations demonstrated that the hydrogels are formed by densely cross-linked porous structures. The PAAc/PAAm/CNC hybrid hydrogels exhibit swelling and shrinking properties that can be induced by multiple stimuli, including temperature, pH, and salt concentration. The driving force of the volume transition is the formation and dissociation of hydrogen bonds in the hydrogels. A certain content of CNCs can greatly enhance the shrinkage capability and mechanical strength of the hybrid hydrogels, but an excess addition may impair the contractility of the hydrogel. Furthermore, the hydrogels can be used as a matrix to adsorb dyes, such as methylene blue (MB), for water purification. MB may be partly discharged from hydrogels by saline solutions, especially by those with high ionic strength. Notably, through temperature-controlled hydrogel swelling and shrinking, doxorubicin hydrochloride (DOX-HCl) can be controllably adsorbed and released from the prepared hydrogels.

Soft Matter ◽  
2021 ◽  
Author(s):  
Aliaksei Aliakseyeu ◽  
Victoria Albright ◽  
Danielle Yarbrough ◽  
Samantha Hernandez ◽  
Qing Zhou ◽  
...  

This work establishes a correlation between the selectivity of hydrogen-bonding interactions and the functionality of micelle-containing layer-by-layer (LbL) assemblies. Specifically, we explore LbL films formed by assembly of poly(methacrylic acid)...


2016 ◽  
Vol 2 (1) ◽  
pp. 1-4
Author(s):  
Sylvia Pfensig ◽  
Daniela Arbeiter ◽  
Klaus-Peter Schmitz ◽  
Niels Grabow ◽  
Thomas Eickner ◽  
...  

AbstractIn this study, varying amounts of NIPAAm and an ionic liquid (IL), namely 1-vinyl-3-isopropylimidazolium bromide ([ViPrIm]+[Br]−), have been used to synthesize hybrid hydrogels by radical emulsion polymerization. Amounts of 70/30%, 50/50%, 30/70%, 15/85% and 5/95% (wt/wt) of PIL/pNIPAAm were used to produce hybrid hydrogels as well as the parental hydrogels. The adhesive strength was investigated and evaluated for mechanical characterization. Thermal properties of resulting hydrogels have been investigated using differential scanning calorimetry (DSC) in a default heating temperature range (heating rate 10 K min−1). The presence of poly ionic liquids (PIL) in the polymer matrix leads to a moved LCST (lower critical solution temperature) to a higher temperature range for certain hybrid hydrogels PIL/pNIPAAm. While pNIPAAm exhibits an LCST at 33.9 ± 0.3°C, PIL/pNIPAAm 5/95% and PIL/pNIPAAm 15/85% were found to have LCSTs at 37.6 ± 0.9°C and 52 ± 2°C, respectively. This could be used for controlled drug release that goes along with increasing body temperature in response to an implantation caused infection.


1970 ◽  
Vol 48 (6) ◽  
pp. 904-909 ◽  
Author(s):  
A. N. Campbell ◽  
E. M. Kartzmark

The following physical properties of the acetic anhydride – acetone – carbon disulfide system have been investigated: congruent compositions, excess volumes, dielectric constants. For the system acetone – carbon disulfide, the excess volumes and the molar polarizations are much greater than those required by the mixture rule. From this we deduced that this system is very non-ideal and might, at a suitable temperature, form two layers; two liquid layers did indeed form at −73 °C, the upper critical solution temperature occurring somewhere between this temperature and 0 °C. We offer it as a general rule that, if the deviation from additivity of molar polarization is large and positive, two layers will form at a sufficiently low temperature, provided that solid phases do not intervene. This deduction becomes almost a certainty if large positive deviations from additivity of molar volume and large positive heats of mixing are also present.


Sign in / Sign up

Export Citation Format

Share Document