swelling and shrinking
Recently Published Documents


TOTAL DOCUMENTS

105
(FIVE YEARS 16)

H-INDEX

24
(FIVE YEARS 2)

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Kaiwen Tong ◽  
Jianhua Guo ◽  
Shanxiong Chen ◽  
Fei Yu ◽  
Shichang Li ◽  
...  

Montmorillonite is the main mineral source for the swelling and shrinking of expansive soils. The macroscopic phenomena of soil are affected by the action of deep-level nanosized minerals. In order to illustrate the nanoscale mechanism from the molecular level, a combination of Monte Carlo and molecular dynamics was used to explore the swelling and shrinking characteristics of montmorillonite. The results showed that the basal spacing, free swelling ratio, and void ratio were positively correlated with water content but were inversely proportional to the change of CEC. The hysteresis phenomena of swelling and shrinking were the most significant at a water content of 40%. Compared with the expansive soil, the nanoscale shrinkage curve of montmorillonite also included three stages of normal shrinkage, residual shrinkage, and no shrinkage. The relative concentration of water molecules conveyed information such as the thickness and position of the hydration film and explained the difference in swelling and shrinking caused by the above variables. The changes in the number and length of hydrogen bonds revealed the order of formation and the process of destruction of hydrogen bonds during the reaction. The similarity of the trends between the basal spacing, binding energy, and the number of hydrogen bonds indicated that the swelling and shrinking of the crystal layer are a reflection of the molecular interaction, and the hydrogen bonding is particularly critical.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1219
Author(s):  
Yuchen Jiang ◽  
Guihua Li ◽  
Chenyu Yang ◽  
Fangong Kong ◽  
Zaiwu Yuan

Multiresponsive hydrogels have attracted tremendous interest due to their promising applications in tissue engineering, wearable devices, and flexible electronics. In this work, we report a multiresponsive upper critical solution temperature (UCST) composite hydrogel based on poly (acrylic acid-co-acrylamide), PAAc-co-PAAm, sequentially cross-linked by acid-hydrolysis cellulose nanocrystals (CNCs). Scanning electron microscopy (SEM) observations demonstrated that the hydrogels are formed by densely cross-linked porous structures. The PAAc/PAAm/CNC hybrid hydrogels exhibit swelling and shrinking properties that can be induced by multiple stimuli, including temperature, pH, and salt concentration. The driving force of the volume transition is the formation and dissociation of hydrogen bonds in the hydrogels. A certain content of CNCs can greatly enhance the shrinkage capability and mechanical strength of the hybrid hydrogels, but an excess addition may impair the contractility of the hydrogel. Furthermore, the hydrogels can be used as a matrix to adsorb dyes, such as methylene blue (MB), for water purification. MB may be partly discharged from hydrogels by saline solutions, especially by those with high ionic strength. Notably, through temperature-controlled hydrogel swelling and shrinking, doxorubicin hydrochloride (DOX-HCl) can be controllably adsorbed and released from the prepared hydrogels.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 293
Author(s):  
Shu Okumura ◽  
Benediktus Nixon Hapsianto ◽  
Nicolas Lobato-Dauzier ◽  
Yuto Ohno ◽  
Seiju Benner ◽  
...  

Hydrogels are essential in many fields ranging from tissue engineering and drug delivery to food sciences or cosmetics. Hydrogels that respond to specific biomolecular stimuli such as DNA, mRNA, miRNA and small molecules are highly desirable from the perspective of medical applications, however interfacing classical hydrogels with nucleic acids is still challenging. Here were demonstrate the generation of microbeads of DNA hydrogels with droplet microfluidic, and their morphological actuation with DNA strands. Using strand displacement and the specificity of DNA base pairing, we selectively dissolved gel beads, and reversibly changed their size on-the-fly with controlled swelling and shrinking. Lastly, we performed a complex computing primitive—A Winner-Takes-All competition between two populations of gel beads. Overall, these results show that strand responsive DNA gels have tantalizing potentials to enhance and expand traditional hydrogels, in particular for applications in sequencing and drug delivery.


Author(s):  
Olaf Kolditz ◽  
Uwe-Jens Görke ◽  
Heinz Konietzky ◽  
Jobst Maßmann ◽  
Mathias Nest ◽  
...  

AbstractAs a result of the GeomInt research project (Chap. 1) a broad combined experimental and numerical platform for the investigation of discontinuities due to swelling and shrinking processes (WP1, Sect. 2.3), pressure-driven percolation (WP2, Sect. 2.4) and stress redistribution (WP3, Sect. 2.4) for important reservoir and barrier rocks (clay, salt, crystalline) has been developed. Model comparisons for damage and fracture processes driven by different processes provide information on the optimal areas of application of the numerical methods (Sect. 2.5).


2020 ◽  
pp. 2000108
Author(s):  
Sunny Kumar ◽  
Sapana Madan ◽  
Nilambar Bariha ◽  
S Suresh

2020 ◽  
Vol 10 (6) ◽  
pp. 2016
Author(s):  
Raden Rinova Sisworo ◽  
Masato Hasegawa ◽  
Kousuke Nakashima ◽  
Yu Norimatsu ◽  
Yukio Tada

This study investigates the factors affecting the formation of monodispersed thermosensitive gels and the parameters influencing the movement of gel particles containing N-isopropyl acrylamide in an aqueous polymeric solution in an upper heating system. Monodispersed thermosensitive gels were generated, and their swelling and shrinking behaviors were observed. The results revealed that continuous-phase flow rate and kinematic viscosity were most influential on the size of the monodispersed thermosensitive gels, which exhibited swelling and shrinking at both low and high temperatures of the polymeric aqueous solution, respectively, and demonstrated negative thermal expansion. In a low-temperature solution, the buoyancy force acting on the gel particles exceeded the gravitational force, because of which the size of the gels increased and the gels to ascended. At higher temperatures, the gels shrank because the gravitational force outweighed the buoyancy force, causing the gels to descend. The gels with a larger diameter tended to have longer durations of vertical movements within the aqueous polymeric solution than the smaller-sized gels; moreover, equilibrium conditions were quickly achieved by the smaller gels.


2020 ◽  
Vol 212 ◽  
pp. 345-351
Author(s):  
Hongwei Zang ◽  
Yao Fu ◽  
Mengyao Hou ◽  
Helong Li ◽  
Kaoru Yamanouchi ◽  
...  

2020 ◽  
Vol 29 (1) ◽  
pp. NP-NP
Author(s):  
D. P. Giles ◽  
J. S. Griffiths

The UK is perhaps unique globally in that it presents the full spectrum of geological time, stratigraphy and associated lithologies within its boundaries. With this wide range of geological assemblages comes a wide range of geological hazards, whether they be geophysical (earthquakes, effects of volcanic eruptions, tsunami, landslides), geotechnical (collapsible, compressible, liquefiable, shearing, swelling and shrinking soils), geochemical (dissolution, radon and methane gas hazards) or georesource related (coal, chalk and other mineral extraction). An awareness of these hazards and the risks that they pose is a key requirement of the engineering geologist.The Geological Society considered that a Working Party Report would help to put the study and assessment of geohazards into the wider social context, helping the engineering geologist to better communicate the issues concerning geohazards in the UK to the client and the public. This volume sets out to define and explain these geohazards, to detail their detection, monitoring and management and to provide a basis for further research and understanding.


2020 ◽  
Vol 29 (1) ◽  
pp. 223-242 ◽  
Author(s):  
Lee Jones ◽  
Vanessa Banks ◽  
Ian Jefferson

AbstractSwelling and shrinking soils are soils that can experience large changes in volume due to changes in water content. This may be due to seasonal changes in moisture content, local site changes such as leakage from water supply pipes or drains, changes to surface drainage and landscaping, or following the planting, removal or severe pruning of trees or hedges. These soils represent a significant hazard to structural engineers across the world due to their shrink–swell behaviour, with the cost of mitigation alone running into several billion pounds annually. These soils usually contain some form of clay mineral, such as smectite or vermiculite, and can be found in humid and arid/semi-arid environments where their expansive nature can cause significant damage to properties and infrastructure. This chapter discusses the properties and costs associated with shrink–swell soils, their formation and distribution throughout the UK and the rest of the world, and their geological and geotechnical characterization. It also considers the mechanisms of shrink-swell soils and their behaviour, reviewing strategies for managing them in an engineering context, before finally outlining the problem of trees and shrink–swell soils.


2020 ◽  
Vol 29 (1) ◽  
pp. 1-41
Author(s):  
David Peter Giles

AbstractThe UK is perhaps unique globally in that it presents the full spectrum of geological time, stratigraphy and associated lithologies within its boundaries. With this wide range of geological assemblages comes a wide range of geological hazards, whether geophysical (earthquakes, effects of volcanic eruptions, tsunami, landslides), geotechnical (collapsible, compressible, liquefiable, shearing, swelling and shrinking soils), geochemical (dissolution, radon and methane gas hazards) or related to georesources (coal, chalk and other mineral extraction). An awareness of these hazards and the risks that they pose is a key requirement of the engineering geologist. This volume sets out to define and explain these geohazards, to detail their detection, monitoring and management, and to provide a basis for further research and understanding, all within a UK context.


Sign in / Sign up

Export Citation Format

Share Document