scholarly journals A Novel Application of the Hydrophobic Polyurethane Foam: Expansive Soil Stabilization

Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1335
Author(s):  
Mohamed Ezzat Al-Atroush ◽  
Omar Shabbir ◽  
Bandar Almeshari ◽  
Mohamed Waly ◽  
Tamer A. Sebaey

The reversible shrink–swell behavior of expansive soil imposes a serious challenge that threatens the overlying structures’ safety and durability. Traditional chemical additives such as lime and cement still exhibit satisfying performance over their counterparts in terms of swelling potential reduction. Nevertheless, significant concerns are associated with these chemicals, in addition to their environmental impact. This paper proposes a novel application of the closed-cell one-component hydrophobic polyurethane foam (HPUF) to stabilize the swelling soil. An extensive experimental study was performed to assess the efficiency of HPUF in mitigating both the swelling and shrinkage response of high montmorillonite content expansive soil. Expansive soil was injected/mixed with different weight ratios of the proposed stabilizer, and the optimum mixing design and injection percentage of the foam resin were identified to be ranged from 10% to 15%. The shrink–swell behaviors of both injected and noninjected samples were compared. Results of this comparison confirmed that HPUF could competently reduce both the swelling potential and the shrinkage cracking of the reactive expansive soil, even after several wet-shrink cycles.

2020 ◽  
Vol 26 (7) ◽  
pp. 158-174
Author(s):  
Safin B. Saeed ◽  
Kamal Ahmad Rashed

Expansive soil is one of the most serious problems that face engineers during the execution of any infrastructure projects. Soil stabilization using chemical admixture is one of the most traditional and widespread methods of soil improvement. Nevertheless, soil improvement on site is one of the most economical solutions for many engineering applications. Using construction and demolishing waste in soil stabilization is still under research., The aim of this study is to identify the effect of using concrete demolishing waste (CDW) in soil stabilization. Serious tests were conducted to investigate the changes in the geotechnical properties of the natural soil stabilized with CDW. From the results, it is concluded that the swelling potential of the expansive soil reduced and dramatic increases in unconfined compressive strength (UCS) value up to 3 times of its original value was reported. The results indicate that CDW is an economical solution to be used in soil stabilization whereas it is a sustainable idea to recycle constructional wastes and solve the continued need for the more landfilling area.


2020 ◽  
Vol 331 ◽  
pp. 02005
Author(s):  
Sofwan ◽  
Sukiman Nurdin

This research is intended to increase the bearing capacity and durability of expansive clay subgrade with Portsoil Composite Cement (PCC) and Iron Oxide additives. Using two variants of the stabilization material composition; composition-1 is soil with 5% of PCC, and composition-2 is soil with 5% PCC + 0. 04% Iron Oxide). Tests include swelling potential, durability, and CBR (California Bearing Ratio). The test results showed that the performance of stabilization using composition-2 was able to reduce swelling potential on day 3 by 94. 44% (14. 44% greater than using composition-1), reducing the potential for volume increment by 94. 15% (greater 15. 02% compared to using composition-1) and weight to 93. 31% (15. 32% greater than using first). The highest CBR value in the 3 wet-dry cycle periods was nature soil 2. 32%, using composition-1 reached 25. 26%, while using composition-2 reached 36. 93% (11. 67% greater than CBR value using composition-1). That the addition of 0. 04% Iron Oxide to PCC-soil stabilization can significantly improve cement performance for expansive clay stabilization as a road subgrade.


2017 ◽  
Vol 35 (4) ◽  
pp. 1717-1744 ◽  
Author(s):  
Amin Soltani ◽  
Abbas Taheri ◽  
Mehdi Khatibi ◽  
A. R. Estabragh

Author(s):  
A. A. Musale ◽  
M. A. Mhetre ◽  
A. I. Mukeri ◽  
K. S. Chavan ◽  
R. N. Kawade ◽  
...  

1994 ◽  
Vol 30 (6) ◽  
pp. 143-149 ◽  
Author(s):  
H. Deguchi ◽  
M. Kashiwaya

An experimental study was carried out to find a way of using sponge cubes as a biomass support medium to reaction tanks for nitrified liquor recycling process. Type-A, in which biomass fixed cubes are contacted with both anoxic and oxic stages and Type-B, where biomass fixed cubes are contacted with either anoxic or oxic stages, were selected as experimental cases. The results showed that the amount of CO2-C generated which was related to sludge production for Type-B exceeded the amount for Type-A by between 12 to 21%. The nitrification and denitrification rate coefficients at 20°C in Type-A were 1.5 and 1.6 times respectively higher than the coefficients for suspended growth. The rate coefficients in Type-B were 1.5 and 2.0 times respectively higher than the coefficients for Type-A.


2014 ◽  
Vol 39 (2) ◽  
pp. 127-138 ◽  
Author(s):  
Y. Zhou ◽  
H. H. Xiao ◽  
J. H. Sun ◽  
X. N. Zhang ◽  
W. G. Yan ◽  
...  

2021 ◽  
Vol 719 (3) ◽  
pp. 032030
Author(s):  
Maosheng Wang ◽  
Jiaming Liu ◽  
Weichao Ao ◽  
Shoudong Qi ◽  
Junhua Wu

Sign in / Sign up

Export Citation Format

Share Document