scholarly journals Evaluating the Uses of Concrete Demolishing Waste in improving the Geotechnical Properties of Expansive Soil

2020 ◽  
Vol 26 (7) ◽  
pp. 158-174
Author(s):  
Safin B. Saeed ◽  
Kamal Ahmad Rashed

Expansive soil is one of the most serious problems that face engineers during the execution of any infrastructure projects. Soil stabilization using chemical admixture is one of the most traditional and widespread methods of soil improvement. Nevertheless, soil improvement on site is one of the most economical solutions for many engineering applications. Using construction and demolishing waste in soil stabilization is still under research., The aim of this study is to identify the effect of using concrete demolishing waste (CDW) in soil stabilization. Serious tests were conducted to investigate the changes in the geotechnical properties of the natural soil stabilized with CDW. From the results, it is concluded that the swelling potential of the expansive soil reduced and dramatic increases in unconfined compressive strength (UCS) value up to 3 times of its original value was reported. The results indicate that CDW is an economical solution to be used in soil stabilization whereas it is a sustainable idea to recycle constructional wastes and solve the continued need for the more landfilling area.

2016 ◽  
Vol 1 (1) ◽  
Author(s):  
Emeka Segun Nnochiri ◽  
Olufikayo Aderinlewo

This paper investigated the geotechnical properties of lateritic soil with banana leaves ash. The natural soil sample was gotten from the Federal University of Technology, Akure (FUTA), Nigeria, and were subjected to preliminary soil tests such as natural moisture content, specific gravity and atterberg limit at its natural state. Engineering tests such as compaction, california bearing ratio and unconfined compressive strength tests  were also carried out on the lateritic soil at their natural states and at when the banana leaves ashes were added to the soil at varying proportions of 2, 4, 6, 8 and 10% by weight of soil. The result of the strength tests showed that the banana leaves ash enhanced the strength of the lateritic soil. The unsoaked CBR value of the soil at its natural state was 10.42 % and it got to optimum value of  28.10% by addition of 4% banana leaves ash by weight of soil. The unconfined compressive strength improved from 209.18 kN/m2  at natural state to 233.77 kN/m 2  at 4% banana leaves ashes. It was therefore concluded that the banana leaves ash satisfactorily act as cheap stabilizing agents for subgrade purposes.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Ali Ateş

Soil stabilization has been widely used as an alternative to substitute the lack of suitable material on site. The use of nontraditional chemical stabilizers in soil improvement is growing daily. In this study a laboratory experiment was conducted to evaluate the effects of waterborne polymer on unconfined compression strength and to study the effect of cement grout on pre-venting of liquefiable sandy soils. The laboratory tests were performed including grain size of sandy soil, unit weight, ultrasonic pulse velocity, and unconfined compressive strength test. The sand and various amounts of polymer (1%, 2%, 3%, and 4%) and cement (10%, 20%, 30%, and 40%) were mixed with all of them into dough using mechanical kneader in laboratory conditions. Grouting experiment is performed with a cylindrical mould of  mm. The samples were subjected to unconfined compression tests to determine their strength after 7 and 14 days of curing. The results of the tests indicated that the waterborne polymer significantly improved the unconfined compression strength of sandy soils which have susceptibility of liquefaction.


2020 ◽  
Vol 998 ◽  
pp. 323-328
Author(s):  
Achmad Bakri Muhiddin ◽  
Marthen M. Tangkeallo

In remote areas, most roads still use pavements that are very sensitive to climate change, especially those using clay pavements with high plasticity. In addition to the issue of cost, the difficulty of obtaining a proper source of material is another problem that has led to soaring prices for materials. In this regard, a study was conducted using local materials, namely zeolite as a stabilizing material added with waterglass as activating agent. The research began with samples of laterite soil and natural zeolite for XRD test (microstructure testing), and then testing for laterite soil’s index properties and engineering properties, namely Unconfined Compressive Strength and CBR value. The purpose of the test is to determine the correlation between the Unconfined Compressive Strength (UCS) and the soil bearing capacity (CBR) caused by adding zeolite as stabilizer material and waterglass as activator with increasing curing time. Laterite soils contain a brownish red iron oxide. The stabilizing material zeolite contains a crystalline mineral of alumina silicate SiO2. While waterglass composed of sodium meta silicate. Stabilization carried out by mixing 4%, 8%, 12%, 16%, and 20% of zeolite with addition of 2% waterglass, percentage was measured based on soil dry weight. Specimens were tested at curing time of 0, 7, 14, and 28 days. The test result shows increasing UCS and CBR values with increasing percentage of zeolite. At mix of 20% zeolite and 2% waterglass, the unconfined compressive strength reaches 23.54 kg/cm2 with CBR value 58% at 28 days of curing time.


2014 ◽  
Vol 21 (1) ◽  
pp. 59-67 ◽  
Author(s):  
Ismail Zorluer ◽  
Suleyman Gucek

AbstractThe use of waste materials as an additive in soil stabilization has been widespread. This is important in terms of recycling of waste materials and reducing environmental pollution. The objective of this study is to investigate the beneficial reuse of marble dust and fly ash in soil stabilization. Tests were performed on clay soil mixtures amended with marble dust and fly ash. Marble dust was used as an activator due to fly ash being inadequate for self-cementing. Unconfined compressive strength (qu), freeze-thaw, swelling, and California bearing ratio (CBR) tests were conducted to investigate the effect of marble dust and fly ash, curing time, and molding water content on geotechnical parameters. Addition of marble dust and fly ash increased unconfined compressive strength, CBR, and freeze-thaw strength, but these additives decreased swelling potential and grain loss after freeze-thaw. Increasing the curing time results in increased strength of mixtures and decreased grain loss. As a result, this study shows that the geotechnical properties of clay soil are improved with the addition of marble dust and fly ash. This is an economical and environmentally friendly solution.


2021 ◽  
Vol 54 (2B) ◽  
pp. 76-84
Author(s):  
Ahmed K. Al-Nimah

Oil contamination in soils causes several geotechnical problems that must be considered during construction. The contamination occurs due to oil seepage which could happen during oil explorations and production processes or oil transportation. The site of West Qurna oilfield in Basrah was selected for this study because it has witnessed oil seepages many times. In order to study the significant impact on geotechnical properties of soils in the West Qurna site, as uncontaminated bulk soil sample was taken at a depth of 1 m, and crude oil was added at weight ratios of 2, 4, 6, 8, and 10 %. Laboratory tests were performed on all samples; these tests included particle size distribution, moisture content, Atterberg’s limits, consolidation, unconfined compressive strength, and water absorption. The results show that soil at the West Qurna site is clayey silt with little sand and the moisture content is 29.21%. The values of liquid limit and plasticity index were gradually decreased, while the plastic limit was increased with increasing of crude oil in the soil of study. There was an increase in consolidation coefficients [compressive index, swelling index, pre-consolidation pressure, and coefficient of consolidation] with an increase in the percentages of crude oil in the soil. The results also show that there was a decrease in the values of unconfined compressive strength and absorption of water as the crude oil was increased in the soil.


2020 ◽  
Vol 10 (3) ◽  
pp. 36-53
Author(s):  
Dr. Zaid Hameed Majeed ◽  
Eng. Kadhim Jawad Aubais ◽  
Dr. Mohd Raihan Taha

The design foundations  of storage tanks for oil industry experiences significant problems due to the widespread occurrence of weak and compressible soil which resulted in foundation failure. In this study, soft soils were taken from two locations and mixed with three types of nanoparticles which were nano-alumina (nano Al2O3), nano-copper (nano CuO), and nano-magnesium (nano MgO). Nanomaterials were incorporated in small percentage (less than 1%) by dry weight of soil. The tested geotechnical characteristics included the water content, dry density, and the unconfined compressive strength. The results showed significant enhancements in the maximum dry density and unconfined compressive strength. The level of enhancement depended on the type of nanomaterials and the contents. Improved strength and hardening properties were shown with the utilization of nano CuO material in comparison to the soil samples with the other nanomaterials additions, with its optimum addition of 0.7% provided an increment rate of 662.7% while the optimum nano CuO which is about 1% showed a 532% increasing rate in the compressive strength of S1 soil. It was noted that the maximum dry density and unconfined compressive strength enhanced with the increase in the nanoparticles content until reaching a percentage in which the strength decreased. The optimum content of the nano MgO was 0.3% while the optimum nano Al2O3 content was about 0.3% for soil S1 and was about 0.1% for soil S2. The presence of nanomaterials in excessive contents caused agglomeration of particles which had negative influences on mechanical characteristics of the soils. Generally, the incorporation of finer particles like nanoparticles even with low amount would improve the geotechnical characteristics of soils with the consideration of the potential environmental benefits, these combined admixtures are intended to lower the cost and become a more sustainable and environmental alternative for soil stabilization


2021 ◽  
Vol 236 ◽  
pp. 02010
Author(s):  
Yuguo Zhang ◽  
Weijie Zhang ◽  
Xiaojie Shi ◽  
Tai Guo ◽  
Zhenghao Chen

Aiming at the question of improvement expansive soil in Nanyang area, the composite improvement method of lignin and cement was adopted. Based on the unconfined compressive strength test, the variation law of unconfined compressive strength of improved expansive soil with different lignin content, different compaction degree and different curing age was studied. The test results show that the composite of lignin and cement can effectively improve the unconfined compressive strength of expansive soil. The unconfined compressive strength of L-C (lignin and cement) improved expansive soil reaches the maximum when the cement content is fixed at 4% and the lignin content is 1%. The unconfined compressive strength of L-C improved soil increases with the increase of compaction degree and curing age, and the strength growth mainly concentrated in the first 7 days of curing age. From the point of improvement mechanism, the hydration and gelation reaction of cement occur in expansive soil, and gel material with higher strength is formed to enhance the strength of expansive soil. The appropriate amount of lignin can fill the pores between soil particles and make the connection between soil particles more closely, so as to improve the strength of expansive soil.


2019 ◽  
Vol 8 (2) ◽  
pp. 6252-6257

Clayey soils are considered as the weakest subgrade soil from civil engineering point of view under moist condition. These soils attract and absorb water and loses their strength. Because of this reason certain inherent properties of these clayey soils need modification for their bulk use in construction of highways, embankments etc. Recently, many synthetic fibres have emerged to strengthen soft soils. Synthetic fibres are low-cost materials, hydrophobic and chemically inert in nature which does not allow the absorption or reaction with soil moisture. The inclusion of synthetic fibres provides reinforcement to the soil and use of lime as a soil stabilizer in BC soil cut down the plasticity index and also increase its strength. For this an extensive laboratory test program was conducted to analyse the variation geotechnical properties of soil by changing the percentage of recron fibre at an optimum dose of lime. The laboratory tests include Atterberg Limit Test, Modified Proctor Test, Unconfined Compressive Strength Test and California Bearing Ratio Test. To conduct different tests on soil sample the proportion of lime is kept fixed and proportion of polyester recron fibre is varied from 0% to 1% by dry weight of soil sample for different lengths of fibre(6 mm, 12 mm & 18 mm separately). Optimum dose of lime is find out by plasticity index of BC soil mixed with varying percentages of lime (4%, 6%, 8% and 10%). Results of the experiments shows that with the increase in the appropriate percentage in recron fibre the Unconfined Compressive Strength and California Bearing Ratio increases. On increasing the length of Recron Fibre, the Unconfined Compressive Strength and California Bearing Ratio also increases. Combination of lime and recron fibre in BC soil give higher CBR value. Therefore it can be used in the improvement of Clayey Soil Subgrade in pavement design and in the construction of embankements.


2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Anigilaje B Salahudeen ◽  
Ja’afar A Sadeeq

The study investigate the suitability of subgrade soil in Baure Local Government Area of Kastina State Nigeria for road construction. The strength properties of the  subgrade was improved using lime and cement. Several analysis including the particle size distribution, specific gravity, Atterberg limits, compaction characteristics, unconfined compressive strength and California bearing ratio tests were performed on natural and lime/cement treated soil samples in accordance with BS 1377 (1990) and BS 1924 (1990) respectively. Soil specimens were prepared by mixing the soil with lime and cement in steps of 0, 3, 6, and 9% by weight of dry soil in several percentage combinations. The Atterberg limits of the weak subgrade soils improved having a minimum plasticity index value of 5.70 % at 3%Lime/6%Cement contents. The maximum dry density (MDD) values obtained showed a significant improvement having a peak value of 1.66 kN/m3 at 9%Lime/9%Cement contents. Similarly, a minimum value of 18.50 % was observed for optimum moisture content at 9%Lime/9%Cement contents which is a desirable reduction from a value of 25.00 % for the natural soil. The unconfined compressive test value increased from 167.30 kN/m2 for the natural soil to 446.77 kN/m2 at 9%Lime/9%Cement contents 28 days curing period. Likewise, the soaked California bearing ratio values increased from 2.90 % for the natural soil to 83.90 % at 9%Lime/9%Cement contents. Generally, there were improvements in the engineering properties of the weak subgrade soil when treated with lime and cement. However, the peak UCS value of 446.77 kN/m2 fails to meet the recommended UCS value of 1710 KN/m2 specified by TRRL (1977) as a criterion for adequate stabilization using Ordinary Portland Cement.            Keywords: Weak subgrade soil, Lime, Cement, Atterberg limits, Maximum dry density, Optimum moisture content, Unconfined compressive strength, California bearing ratio


2020 ◽  
Vol 26 (7) ◽  
pp. 145-157
Author(s):  
Zozk Kawa Abdalqadir ◽  
Nihad Bahaaldeen Salih ◽  
Soran Jabbar Hama Salih

The clayey soils have the capability to swell and shrink with the variation in moisture content. Soil stabilization is a well-known technique, which is implemented to improve the geotechnical properties of soils. The massive quantities of waste materials are resulting from modern industry methods create disposal hazards in addition to environmental problems. The steel industry has a waste that can be used with low strength and weak engineering properties soils. This study is carried out to evaluate the effect of steel slag (SS) as a by-product of the geotechnical properties of clayey soil. A series of laboratory tests were conducted on natural and stabilized soils. SS was added by 0, 2.5, 5, 10, 15, and 20% to the soil. The conducted tests are consistency limits, specific gravity, hydrometer analysis, modified Proctor compaction, swelling pressure, swelling percent, unconfined compressive strength, and California Bearing Ratio (Soaked CBR). The results showed that the values of liquid limit, plasticity index, optimum moisture content, swelling pressure, and swelling percent were decreased when stabilized the soil. However, the values of maximum dry density, unconfined compressive strength, and California bearing ratio were increased with the addition of steel slag with various percentages to the clayey soil samples. The steel slag was found to be successfully improving the geotechnical properties of clayey soils.


Sign in / Sign up

Export Citation Format

Share Document