scholarly journals Rigid Polyurethane Foams Reinforced with POSS-Impregnated Sugar Beet Pulp Filler

Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5493
Author(s):  
Anna Strąkowska ◽  
Sylwia Członka ◽  
Agnė Kairytė

Rigid polyurethane (PUR) foams were reinforced with sugar beet pulp (BP) impregnated with Aminopropylisobutyl-polyhedral oligomeric silsesquioxanes (APIB-POSS). BP filler was incorporated into PUR at different percentages—1, 2, and 5 wt.%. The impact of BP filler on morphology features, mechanical performances, and thermal stability of PUR was examined. The results revealed that the greatest improvement in physico-mechanical properties was observed at lower concentrations (1 and 2 wt.%) of BP filler. For example, when compared with neat PUR foams, the addition of 2 wt.% of BP resulted in the formation of PUR composite foams with increased compressive strength (~12%), greater flexural strength (~12%), and better impact strength (~6%). The results of thermogravimetric analysis (TGA) revealed that, due to the good thermal stability of POSS-impregnated BP filler, the reinforced PUR composite foams were characterized by better thermal stability—for example, by increasing the content of BP filler up to 5 wt.%, the mass residue measured at 600 °C increased from 29.0 to 31.9%. Moreover, the addition of each amount of filler resulted in the improvement of fire resistance of PUR composite foams, which was determined by measuring the value of heat peak release (pHRR), total heat release (THR), total smoke release (TSR), limiting oxygen index (LOI), and the amount of carbon monoxide (CO) and carbon dioxide (CO2) released during the combustion. The greatest improvement was observed for PUR composite foams with 2 wt.% of BP filler. The results presented in the current study indicate that the addition of a proper amount of POSS-impregnated BP filler may be an effective approach to the synthesis of PUR composites with improved physico-mechanical properties. Due to the outstanding properties of PUR composite foams reinforced with POSS-impregnated BP, such developed materials may be successfully used as thermal insulation materials in the building and construction industry.

Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2531
Author(s):  
Rodion Kopitzky

Sugar beet pulp (SBP) is a residue available in large quantities from the sugar industry, and can serve as a cost-effective bio-based and biodegradable filler for fully bio-based compounds based on bio-based polyesters. The heterogeneous cell structure of sugar beet suggests that the processing of SBP can affect the properties of the composite. An “Ultra-Rotor” type air turbulence mill was used to produce SBP particles of different sizes. These particles were processed in a twin-screw extruder with poly(lactic acid) (PLA) and poly(butylene succinate) (PBS) and fillers to granules for possible marketable formulations. Different screw designs, compatibilizers and the use of glycerol as a thermoplasticization agent for SBP were also tested. The spherical, cubic, or ellipsoidal-like shaped particles of SBP are not suitable for usage as a fiber-like reinforcement. In addition, the fineness of ground SBP affects the mechanical properties because (i) a high proportion of polar surfaces leads to poor compatibility, and (ii) due to the inner structure of the particulate matter, the strength of the composite is limited to the cohesive strength of compressed sugar-cell compartments of the SBP. The compatibilization of the polymer–matrix–particle interface can be achieved by using compatibilizers of different types. Scanning electron microscopy (SEM) fracture patterns show that the compatibilization can lead to both well-bonded particles and cohesive fracture patterns in the matrix. Nevertheless, the mechanical properties are limited by the impact and elongation behavior. Therefore, the applications of SBP-based composites must be well considered.


2021 ◽  
Author(s):  
Somayyeh Kiani ◽  
Parisa Fathi Rezaei ◽  
Sina Jamalzadegan

This study proposed a novel and cost-effective approach to enhance and optimize the polygalacturonase from P. indica. In current investigation, the impact of ammonium sulfate, sugar beet pulp (SBP) and glucose as variables on induction of polygalacturonase from P. indica was optimized using the central composite design (CCD) of response surface methodology (RSM) under SmF. Additionally, partial polygalacturonase purification and in situ analysis were performed. The optimal reaction conditions, which resulted in the highest enzyme activity were observed as the following conditions: ammonium sulfate (4 g/L), SBP (20 g/L), glucose (60 g/L). Under the optimized condition, the maximum enzyme activity reached to 19.4 U/ml (127 U/mg) which increased by 5.84 times compared to non-optimized conditions. The partial purified polygalacturonase molecular weight was estimated 60 KDa. In line with the bioinformatic analysis, exo-polygalacturonase sequence of P. indica showed similarity with Rhizoctonia solani′s and Thanateporus cucumeris. These results indicated that SBP act as a cheap and suitable inducer of polygalacturonase production by P. indica in a submerged cultivation. The outcome of this study will be useful for industries to decrease environmental pollution with cost-effective approaches.


2016 ◽  
Vol 49 (4) ◽  
pp. 281-297 ◽  
Author(s):  
Lina Dong ◽  
Wenying Zhou ◽  
Xuezhen Sui ◽  
Zijun Wang ◽  
Peng Wu ◽  
...  

Epoxy (Ep) resin modified with carboxyl-terminated polybutadiene (CTPB) liquid rubber was investigated in this study. Fourier transform infrared verified the chemical reactions between oxirane ring of Ep and carboxyl groups of CTPB using benzyldimethylamine as a catalyst. The decrease of the thermal stability could be due to the lower thermal stability of CTPB compared with that of pure Ep. The mechanical results showed that CTPB-modified Ep was superior to that of the pure Ep, and the best overall mechanical properties were normally achieved with 20 phr of CTPB content. The impact strength of the system containing 20 phr CTPB increased by 193% due to the two-phase nature of the system. The dielectric constant and dissipation factor of the modified Ep obviously declined with the CTPB content compared with pure Ep, for instance, the dissipation factor remained less than 0.02 in wide frequency range.


2021 ◽  
Vol 22 (9) ◽  
pp. 4757
Author(s):  
Karolina Miedzińska ◽  
Sylwia Członka ◽  
Anna Strąkowska ◽  
Krzysztof Strzelec

In the following study, ground plum stones and silanized ground plum stones were used as natural fillers for novel polyurethane (PUR) composite foams. The impact of 1, 2, and 5 wt.% of fillers on the cellular structure, foaming parameters, and mechanical, thermomechanical, and thermal properties of produced foams were assessed. The results showed that the silanization process leads to acquiring fillers with a smoother surface compared to unmodified filler. The results also showed that the morphology of the obtained materials is affected by the type and content of filler. Moreover, the modified PUR foams showed improved properties. For example, compared with the reference foam (PUR_REF), the foam with the addition of 1 wt.% of unmodified plum filler showed better mechanical properties, such as higher compressive strength (~8% improvement) and better flexural strength (~6% improvement). The addition of silanized plum filler improved the thermal stability and hydrophobic character of PUR foams. This work shows the relationship between the mechanical, thermal, and application properties of the obtained PUR composites depending on the modification of the filler used during synthesis.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4709 ◽  
Author(s):  
Sylwia Członka ◽  
Anna Strąkowska ◽  
Agnė Kairytė

Polyurethane (PUR) foams reinforced with 2 wt.% hemp shives (HS) fillers were successfully synthesized. Three different types of HS fillers were evaluated—non-treated HS, HS impregnated with sunflower oil (SO) and HS impregnated with tung oil (TO). The impact of each type of HS fillers on cellular morphology, mechanical performances, thermal stability, and flame retardancy was evaluated. It has been shown that the addition of HS fillers improved the mechanical characteristics of PUR foams. Among all modified series, the greatest improvement was observed after the incorporation of non-treated HS filler—when compared with neat foams, the value of compressive strength increased by ~13%. Moreover, the incorporation of impregnated HS fillers resulted in the improvement of thermal stability and flame retardancy of PUR foams. For example, the addition of both types of impregnated HS fillers significantly decreased the value of heat peak release (pHRR), total smoke release (TSR), and limiting oxygen index (LOI). Moreover, the PUR foams containing impregnated fillers were characterized by improved hydrophobicity and limited water uptake. The obtained results confirmed that the modification of PUR foams with non-treated and impregnated HS fillers may be a successful approach in producing polymeric composites with improved properties.


2021 ◽  
Author(s):  
Mohammad L Hassan ◽  
Linn Berglund ◽  
Wafaa S Elseoud ◽  
Enas A Hassan ◽  
Kristiina Oksman

Abstract In this study, the effect of pectin extraction method on the properties of cellulose nanofibers (CNFs) isolated from sugar beet pulp (SBP) was studied. Pectin was extracted by the industrially practiced method by sulfuric acid hydrolysis or by enzymatic hydrolysis using a cellulase/xylanase enzymes mixture. The CNFs were then isolated by high-pressure homogenization and investigated in terms of their chemical composition, crystallinity, size, degree of polymerization, and re-dispersion in water after freeze-drying. The mechanical properties and surface characteristics of CNFs films were also studied. The results showed that fibrillation of the de-pectinated SBP was more efficient for the acid hydrolyzed SBP. CNFs from the acid-hydrolyzed SBP had a slightly wider diameter, higher crystallinity, viscosity, and α-cellulose content but a lower degree of polymerization than CNFs from the enzyme-hydrolyzed SBP. Owing to the presence of more residual hemicelluloses in the CNFs from the enzyme-hydrolyzed SBP, the CNFs had higher re-dispersion ability in water. CNFs films from enzyme-hydrolyzed SBP displayed slightly better mechanical properties and higher water contact angles than acid-hydrolyzed CNF films.


2018 ◽  
Vol 783 ◽  
pp. 51-55
Author(s):  
Bin Xue ◽  
He Zhi He ◽  
Bi Da Liu ◽  
Feng Xue ◽  
Zhi Wen Zhu ◽  
...  

In this work, PLA /PEBA blends with the addition of different PEBA contents were prepared via self-made Triple-Single Screw Extruder, the phase morphology, mechanical properties thermal stability of PLA /PEBA blends with PEBA content were investigated. For the pure PLA, the tensile strength decreased, while the elongation at break and the impact strength increased significantly with addition of 15% PEBA. The which were improved nearly 23 and 5 times. The results illustrate that the soft component PEBA was beneficial to improve the tensile ductility and the toughness of PLA. SEM measurements indicate the PEBA and PLA intertwined with each other, two phases interface bond tightly, improving the compatibility of the blends when PEBA content is not more than 15 wt%, with further increasing PEBA, the two-phase interface appears and decreases the interfacial adhesion, resulting in the poor mechanical properties of blends.TG results reveal that thermal stability of PLA/PEBA blends was improved.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Howell BA ◽  
Daniel YG ◽  
Butwin FJ ◽  
Weil ED

Poly (vinyl chloride) [PVC] is a widely used commodity polymer with particular application for wire and cable coating, and for pipe and profile extrusion. For processing, PVC must be heavily plasticized. In addition, a number of other additives are usually introduced to promote thermal stability, to enhance processability and to inhibit flammability. Antimony oxide is often used in PVC formulations. However, the growing concern about the negative health and environmental impacts of antimony oxide has stimulated efforts to find suitable replacements. Iron compounds have been examined as suitable replacements for antimony oxide. PVC formulations containing 45 phr of Pevalen plasticizer, 50 phr of magnesium hydroxide and 2 or 10 phr of an iron additive were processed using a two-roll mill at 180°C. The thermal degradation and flammability of these materials have been evaluated utilizing thermogravimetry (TGA) and limiting oxygen index (LOI) measurements. All of the iron additives are effective in increasing LOI for combustion of the blends and in promoting char formation. The impact of the presence of all the iron additives is comparable and independent of the oxidation level of iron. Based on considerations of cost and availability, simple iron oxide may be the additive of choice. Keywords: PVC additives; Antimony oxide replacements; Combustibility of formulated PVC; Impact of additives on the thermal stability of PVC;


Cellulose ◽  
2021 ◽  
Author(s):  
Mohammad L. Hassan ◽  
Linn Berglund ◽  
Wafaa S. Abou Elseoud ◽  
Enas A. Hassan ◽  
Kristiina Oksman

AbstractIn this study, the effect of pectin extraction method on the properties of cellulose nanofibers (CNFs) isolated from sugar beet pulp (SBP) was studied. Pectin was extracted by the industrially practiced method by sulfuric acid hydrolysis or by enzymatic hydrolysis using a cellulase/xylanase enzymes mixture. The CNFs were then isolated by high-pressure homogenization and investigated in terms of their chemical composition, crystallinity, size, degree of polymerization, and re-dispersion in water after freeze-drying. The mechanical properties and surface characteristics of CNF films were also studied. The results showed that fibrillation of the de-pectinated SBP was more efficient for the acid hydrolyzed SBP. CNFs from the acid-hydrolyzed SBP had a slightly wider diameter, higher crystallinity, viscosity, and α-cellulose content but a lower degree of polymerization than CNFs from the enzyme-hydrolyzed SBP. Owing to the presence of more residual hemicelluloses in the CNFs from the enzyme-hydrolyzed SBP, the CNFs had higher re-dispersion ability in water. CNF films from enzyme-hydrolyzed SBP displayed slightly better mechanical properties and higher water contact angle than acid-hydrolyzed CNF films. Graphic abstract


Sign in / Sign up

Export Citation Format

Share Document