scholarly journals Experimental Analysis of Kerf Taper Angle in Cutting Process of Sugar Palm Fiber Reinforced Unsaturated Polyester Composites with Laser Beam and Abrasive Water jet Cutting Technologies

Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2543
Author(s):  
Fathi Masoud ◽  
S. M. Sapuan Sapuan ◽  
Mohd Khairol Anuar Mohd Ariffin ◽  
Y. Nukman ◽  
Emin Bayraktar

In this research, the effect of processing input parameters on the kerf taper angle response of three various material thicknesses of sugar palm fiber reinforced unsaturated polyester composite was investigated as an output parameter from abrasive waterjet and laser beam cutting techniques. The main purpose of the study is to obtain data that includes the optimum input parameters in cutting the composite utilizing these two unconventional techniques to avoid some defects that arise when using traditional cutting methods for cutting the composites, and then make a comparison to determine which is the most appropriate technique regarding the kerf taper angle response that is desired to be reduced. In the laser beam cutting process, traverse speed, laser power, and assist gas pressure were selected as the variable input parameters to optimize the kerf taper angle. While the water pressure, traverse speed, and stand-off-distance were the input variable parameters in the case of waterjet cutting process, with fixing of all the other input parameters in both cutting techniques. The levels of the input parameters that provide the optimal response of the kerf taper angle were determined using Taguchi’s approach, and the significance of input parameters was determined by computing the max–min variance of the average of the signal to-noise ratio (S/N) for each parameter. The contribution of each input processing parameter to the effects on kerf taper angle was determined using analysis of variation (ANOVA). Compared with the results that were extrapolated in the previous studies, both processes achieved acceptable results in terms of the response of the kerf taper angle, noting that the average values produced from the laser cutting process are much lower than those resulting from the waterjet cutting process, which gives an advantage to the laser cutting technique.


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 706
Author(s):  
Fathi Masoud ◽  
S. M. Sapuan ◽  
Mohd Khairol Anuar Mohd Ariffin ◽  
Y. Nukman ◽  
Emin Bayraktar

In this paper, the influence of processing input parameters on the heat-affected zone (HAZ) of three different material thicknesses of sugar palm fiber reinforced unsaturated polyester (SPF-UPE) composites cut with a CO2 laser was investigated. Laser power, traverse speed, and gas pressure were selected as the most influential input parameters on the HAZ to optimize the HAZ response with fixing all of the other input parameters. Taguchi’s method was used to determine the levels of parameters that give the best response to the HAZ. The significance of input parameters was also determined by calculating the max–min variance of the average of the signal-to-noise ratio (S/N) ratio for each parameter. Analysis of variation (ANOVA) was used to determine each input parameter’s contribution to the influence on HAZ depth. The general results show that the minimum levels of laser power and the highest levels of traverse speed and gas pressure gave the optimum response to the HAZ. Gas pressure had the most significant effect on the HAZ, with contribution decreases as the material thickness increased, followed by the traverse speed with contribution increases with the increase in material thickness. Laser power came third, with a minimal contribution to the effect on the HAZ, and it did not show a clear relationship with the change in material thickness. By applying the optimum parameters, the desired HAZ depth could be obtained at relatively low values.



2021 ◽  
Vol 11 (11) ◽  
pp. 4925
Author(s):  
Jennifer Milaor Llanto ◽  
Majid Tolouei-Rad ◽  
Ana Vafadar ◽  
Muhammad Aamir

Abrasive water jet machining is a proficient alternative for cutting difficult-to-machine materials with complex geometries, such as austenitic stainless steel 304L (AISI304L). However, due to differences in machining responses for varied material conditions, the abrasive waterjet machining experiences challenges including kerf geometric inaccuracy and low material removal rate. In this study, an abrasive waterjet machining is employed to perform contour cutting of different profiles to investigate the impacts of traverse speed and material thickness in achieving lower kerf taper angle and higher material removal rate. Based on experimental investigation, a trend of decreasing the level of traverse speed and material thickness that results in minimum kerf taper angle values of 0.825° for machining curvature profile and 0.916° for line profiles has been observed. In addition, higher traverse speed and material thickness achieved higher material removal rate in cutting different curvature radii and lengths in line profiles with obtained values of 769.50 mm3/min and 751.5 mm3/min, accordingly. The analysis of variance revealed that material thickness had a significant impact on kerf taper angle and material removal rate, contributing within the range of 69–91% and 62–69%, respectively. In contrast, traverse speed was the least factor measuring within the range of 5–18% for kerf taper angle and 27–36% for material removal rate.



2021 ◽  
Author(s):  
Jennifer llanto ◽  
Majid Tolouei-Rad ◽  
Ana Vafadar ◽  
Muhammad Aamir

Abstract Austenitic stainless steel 304L (AISI304L), of varied thickness, is widely used in the fabrication industry and in many cases, it requires contour machining for achieving intricate profiles. Abrasive water jet machine is a proficient alternative for machining difficult-to-cut, reflective, conductive, and heat-sensitive materials such as austenitic stainless steel with complex geometries. However, due to differences in machining responses for varied material conditions, the abrasive waterjet machine experiences challenges such as kerf geometric inaccuracy and low material removal rate. In this study, an abrasive waterjet machine is employed to perform contour cutting of different profiles to investigate the impacts of traverse speed and material thickness in achieving a lower kerf taper angle and higher material removal rate. Experimental results show that all profiles encountered a similar trend of obtaining higher kerf taper angle and material removal rate as traverse speed increased. Analysis of variance revealed that material thickness denotes a more significant impact to kerf taper angle and material removal rate with a contribution within the range of 69%-91% and 62-69% respectively; whereas traverse speed indicates the least contributing factor within the range of 5%-18% in kerf taper angle and 27%-36% for material removal rate.



2009 ◽  
Vol 626-627 ◽  
pp. 339-344
Author(s):  
Wei Xiao Tang ◽  
X.D. Zhang ◽  
L. Wang

It is becoming general that the contour of part is defined with free-form curves for abrasive waterjet cutting. In this paper, the effect of the traverse speed on cut surface quality is discussed. After that, the free-form Pythagorean Hodographs (PH) curve is defined and its main characteristics are discussed. A new CNC interpolator capable of driving the nozzle along the PH curves at the feedrate adaptable of the curvature of the contour is presented. The taper shape or jet lag can be minimized with it through the variation of the traverse speed. Experimental data indicate that a decrease of about 58 per cent in kerf taper angle can be obtained under a given condition.



1983 ◽  
Vol 4 (4) ◽  
pp. 241-251 ◽  
Author(s):  
M. Lepore ◽  
M. Dell'Erba ◽  
C. Esposito ◽  
G. Daurelio ◽  
A. Cingolani




Author(s):  
Arun Kumar Pandey ◽  
Avanish Kumar Dubey

Duralumin sheets are strong, hard, light weight and heat treated alloy of Aluminum, widely used by different sectors such as automobile, marine, aircraft and satellites. Many a times those applications demand complex shapes and intricate profiles with stringent design requirements which are not completely achieved by conventional sheet cutting methods. Laser cutting has capability of quality cutting with above requirements in thin sheetmetals. But highly reflective and thermally conductive sheetmetals like Duralumin pose difficulty in achieving quality cuts by laser beam. The kerf taper always occurs in laser cut specimen due to inherent converging-diverging profile of laser beam. The optimization of kerf taper and other cut qualities such as surface roughness, heat affected zone and recast layer formation in difficult-to-laser-cut sheetmetals like Duralumin or Aluminium alloy has become recent research interests. The aim of present research is to optimize kerf taper in pulsed laser cutting of Duralumin sheet using hybrid approach of ‘design of experiment (DOE)’ and ‘artificial intelligence tool’ such as genetic algorithm. The empirical model for kerf taper has also been proposed with the discussion on parametric effect.



2002 ◽  
Vol 12 (1) ◽  
pp. 27-41 ◽  
Author(s):  
Y. Zamachtchikov ◽  
F. Breaban ◽  
P. Vantomme ◽  
A. Deffontaine


Author(s):  
M. Lepore ◽  
M. Dell’Erba ◽  
C. Esposito ◽  
G. Daurelio ◽  
A. Cingolani


2020 ◽  
Vol 38 (3B) ◽  
pp. 104-114
Author(s):  
Samah M. Hussein

This research has been done by reinforcing the matrix (unsaturated polyester) resin with natural material (date palm fiber (DPF)). The fibers were exposure to alkali treatment before reinforcement. The samples have been prepared by using hand lay-up technique with fiber volume fraction of (10%, 20% and 30%). After preparation of the mechanical and physical properties have been studied such as, compression, flexural, impact strength, thermal conductivity, Dielectric constant and dielectric strength. The polyester composite reinforced with date palm fiber at volume fraction (10% and 20%) has good mechanical properties rather than pure unsaturated polyester material, while the composite reinforced with 30% Vf present poor mechanical properties. Thermal conductivity results indicated insulator composite behavior. The effect of present fiber polar group induces of decreasing in dielectric strength, and increasing dielectric constant. The reinforcement composite 20% Vf showed the best results in mechanical, thermal and electrical properties.



Sign in / Sign up

Export Citation Format

Share Document