A New Variable Feedrate CNC Interpolator for Abrasive Waterjet System

2009 ◽  
Vol 626-627 ◽  
pp. 339-344
Author(s):  
Wei Xiao Tang ◽  
X.D. Zhang ◽  
L. Wang

It is becoming general that the contour of part is defined with free-form curves for abrasive waterjet cutting. In this paper, the effect of the traverse speed on cut surface quality is discussed. After that, the free-form Pythagorean Hodographs (PH) curve is defined and its main characteristics are discussed. A new CNC interpolator capable of driving the nozzle along the PH curves at the feedrate adaptable of the curvature of the contour is presented. The taper shape or jet lag can be minimized with it through the variation of the traverse speed. Experimental data indicate that a decrease of about 58 per cent in kerf taper angle can be obtained under a given condition.


2021 ◽  
Vol 11 (11) ◽  
pp. 4925
Author(s):  
Jennifer Milaor Llanto ◽  
Majid Tolouei-Rad ◽  
Ana Vafadar ◽  
Muhammad Aamir

Abrasive water jet machining is a proficient alternative for cutting difficult-to-machine materials with complex geometries, such as austenitic stainless steel 304L (AISI304L). However, due to differences in machining responses for varied material conditions, the abrasive waterjet machining experiences challenges including kerf geometric inaccuracy and low material removal rate. In this study, an abrasive waterjet machining is employed to perform contour cutting of different profiles to investigate the impacts of traverse speed and material thickness in achieving lower kerf taper angle and higher material removal rate. Based on experimental investigation, a trend of decreasing the level of traverse speed and material thickness that results in minimum kerf taper angle values of 0.825° for machining curvature profile and 0.916° for line profiles has been observed. In addition, higher traverse speed and material thickness achieved higher material removal rate in cutting different curvature radii and lengths in line profiles with obtained values of 769.50 mm3/min and 751.5 mm3/min, accordingly. The analysis of variance revealed that material thickness had a significant impact on kerf taper angle and material removal rate, contributing within the range of 69–91% and 62–69%, respectively. In contrast, traverse speed was the least factor measuring within the range of 5–18% for kerf taper angle and 27–36% for material removal rate.



2021 ◽  
Author(s):  
Jennifer llanto ◽  
Majid Tolouei-Rad ◽  
Ana Vafadar ◽  
Muhammad Aamir

Abstract Austenitic stainless steel 304L (AISI304L), of varied thickness, is widely used in the fabrication industry and in many cases, it requires contour machining for achieving intricate profiles. Abrasive water jet machine is a proficient alternative for machining difficult-to-cut, reflective, conductive, and heat-sensitive materials such as austenitic stainless steel with complex geometries. However, due to differences in machining responses for varied material conditions, the abrasive waterjet machine experiences challenges such as kerf geometric inaccuracy and low material removal rate. In this study, an abrasive waterjet machine is employed to perform contour cutting of different profiles to investigate the impacts of traverse speed and material thickness in achieving a lower kerf taper angle and higher material removal rate. Experimental results show that all profiles encountered a similar trend of obtaining higher kerf taper angle and material removal rate as traverse speed increased. Analysis of variance revealed that material thickness denotes a more significant impact to kerf taper angle and material removal rate with a contribution within the range of 69%-91% and 62-69% respectively; whereas traverse speed indicates the least contributing factor within the range of 5%-18% in kerf taper angle and 27%-36% for material removal rate.



2019 ◽  
Vol 27 (03) ◽  
pp. 1950112 ◽  
Author(s):  
A. SHANMUGAM ◽  
K. KRISHNAMURTHY ◽  
T. MOHANRAJ

Surface roughness and taper angle of an abrasive waterjet machined surface of 7075 Aluminum metal matrix composite were deliberately studied. Response surface methodology design of experiments and analysis of variance were used to design the experiments and to identify the effect of process parameters on surface roughness and taper angle. The jet traverse speed and jet pressure were the most significant process parameters which influence the surface roughness and taper angle, respectively. Increasing the pressure and jet traverse speed results in increasing the surface roughness and taper angle. At the same time, decreasing the standoff distance and jet traverse speed possibly enhances both the responses. The optimal process parameters of 1[Formula: see text]mm as standoff distance, 192[Formula: see text]MPa as water pressure and 30[Formula: see text]mm[Formula: see text]min[Formula: see text] as jet traverse speed were identified to obtain the minimum value of surface roughness and taper angle. Based on the optimal parameters, the confirmation test was conducted. The mathematical equation was obtained from the experimental data using regression analysis; it was observed that the error was less than 5% of the experimentally measured values.



Author(s):  
A. SHANMUGAM ◽  
T. MOHANRAJ ◽  
K. KRISHNAMURTHY ◽  
ALI KAYA GUR

This work aims to perform the multi-response optimization for abrasive waterjet machining (AWJM) of glass fiber reinforced plastics (GFRP). The experiments were conducted with AWJM factors like pressure (P), traverse speed (TS), and standoff distance (SOD) at three levels. Taguchi’s L9 orthogonal array (OA) was used to design the experiments. The influence of control factors was evaluated by measuring the surface roughness and taper angle while cutting GFRP. The optimum parameter for an individual response was obtained through Taguchi’s [Formula: see text]/[Formula: see text] and multi-response optimization was performed with TOPSIS. From TOPSIS, the optimal parameter of the pressure of 200 MPa, standoff distance (SOD) of 1.5[Formula: see text]mm, and traverse speed (TS) of 25[Formula: see text]mm/min were found. After optimization, the taper angle was decreased by 1.41%. The influence of cutting variables on the responses was statistically analyzed through analysis of variance. It was observed that the pressure has a significant effect on multi-response characteristics and a contribution of 85.90%. After, AWJM, the surface was examined using SEM analysis and found the deformation and pull-out of fibers.



Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7542
Author(s):  
Miroslav Müller ◽  
Viktor Kolář ◽  
Jan Šulc ◽  
Rajesh Kumar Mishra ◽  
Monika Hromasová ◽  
...  

The article focuses on the machining of polymeric materials polypropylene (PP) and un-plasticized poly vinyl chloride (PVC-U) after surface treatment with polyurethane and acrylate coatings using waterjet technology. Two types of waterjet technologies, abrasive waterjet (AWJ) and waterjet without abrasive (WJ), were used. The kerf width and its taper angle, at the inlet and outlet of the waterjet from the workpiece, were evaluated. Significant differences between AWJ and WJ technology were found. WJ technology proved to be less effective due to the creation of a nonuniform cutting gap and significant burrs. AWJ technology was shown to be more efficient, i.e., more uniform cuts were achieved compared to WJ technology, especially at a cutting head traverse speed of 50 mm·min−1. The most uniform kerf width or taper angle was achieved for PP + MOBIHEL (0.09°). The materials (PP and PVC-U) with the POLURAN coating had higher values of the taper angle of the cutting gap than the material with the MOBIHEL coating at all cutting head traverse speeds. The SEM results showed that the inappropriate cutting head traverse speed and the associated WJ technology resulted in significant destruction of the material to be cut on the underside of the cut. Delamination of the POLURAN and MOBIHEL coatings from the base material PP and PVC-U was not demonstrated by SEM analysis over the range of cutting head traverse speeds, i.e., 50 to 1000 mm·min−1.



Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2543
Author(s):  
Fathi Masoud ◽  
S. M. Sapuan Sapuan ◽  
Mohd Khairol Anuar Mohd Ariffin ◽  
Y. Nukman ◽  
Emin Bayraktar

In this research, the effect of processing input parameters on the kerf taper angle response of three various material thicknesses of sugar palm fiber reinforced unsaturated polyester composite was investigated as an output parameter from abrasive waterjet and laser beam cutting techniques. The main purpose of the study is to obtain data that includes the optimum input parameters in cutting the composite utilizing these two unconventional techniques to avoid some defects that arise when using traditional cutting methods for cutting the composites, and then make a comparison to determine which is the most appropriate technique regarding the kerf taper angle response that is desired to be reduced. In the laser beam cutting process, traverse speed, laser power, and assist gas pressure were selected as the variable input parameters to optimize the kerf taper angle. While the water pressure, traverse speed, and stand-off-distance were the input variable parameters in the case of waterjet cutting process, with fixing of all the other input parameters in both cutting techniques. The levels of the input parameters that provide the optimal response of the kerf taper angle were determined using Taguchi’s approach, and the significance of input parameters was determined by computing the max–min variance of the average of the signal to-noise ratio (S/N) for each parameter. The contribution of each input processing parameter to the effects on kerf taper angle was determined using analysis of variation (ANOVA). Compared with the results that were extrapolated in the previous studies, both processes achieved acceptable results in terms of the response of the kerf taper angle, noting that the average values produced from the laser cutting process are much lower than those resulting from the waterjet cutting process, which gives an advantage to the laser cutting technique.



Author(s):  
Barath M ◽  
◽  
Rajesh S ◽  
Duraimurugan P ◽  
◽  
...  

The abrasive mixed waterjet was with success utilized to chop several materials together with steel, metal and glass for a spread of business applications. This work focuses on surface roughness of hybrid metal matrix composite (AA6061, Al2O3, B4C). Machining was applied by AWJM (Abrasive Waterjet Cutting) at completely different parameters Water pressure, Traverse speed, Abrasive flow and stand-off distance. The reinforced composite was analyzed exploitation FE SEM (Field Emission Scanning lepton Microscope) and distribution of reinforced was studied by AFM (Atomic Force Microscopy). For optimum results surface roughness was calculated.



2020 ◽  
Vol 318 ◽  
pp. 01031
Author(s):  
Panagiotis Karmiris-Obratański ◽  
Nikolaos E. Karkalos ◽  
Anastasios Tzotzis ◽  
Panagiotis Kyratsis ◽  
Angelos P. Markopoulos

Conventional machining processes such as turning, milling and drilling have long been prominent in the metalworking industry but alternative processes which do not require the use of a cutting tool in order to conduct material removal have also been proven to be sufficiently capable of achieving high efficiency in various cases. In particular, Abrasive Waterjet (AWJ) machining can be regarded as a rather appropriate choice for cutting operations, taking into consideration that it involves no heat affected zones, is able to process all material types and create a variety of complex features with success. In the present work, a comprehensive study on the effect of four process parameters, namely jet traverse speed, stand-off distance, abrasive mass flow rate and jet pressure on the width and depth of machined slots on a steel workpiece is conducted. The results are first analyzed with statistical methods in order to determine the effect and the relative importance of each parameter on the produced width and depth of the slots. Finally, these results are used to develop soft computing predictive models based on Artificial Neural Networks (ANN), which can efficiently relate the process parameters with its outcome.



Author(s):  
Iman Zohourkari ◽  
Mehdi Zohoor

In this paper, an erosion-based model for abrasive waterjet (AWJ) turning process is presented. In the AWJ turning process a particular volume of material is removed by impacting of abrasive particles to the surface of the rotating cylindrical workpiece. This volume is estimated according to the modified Hashish erosion model; thus radius reduction at each revolution is calculated. The distinctively proposed model considers the continuous change in local impact angle due to change in workpiece diameter, axial traverse speed of the jet, the abrasive particle roundness and density. The accuracy of the proposed model is approved by experimental tests under various traverse speeds. The final diameters estimated by the new model are in good accordance with the experiments.



Author(s):  
Naresh Babu Munuswamy ◽  
M. Nambi Krishnan

This study investigates optimal parameter setting in abrasive waterjet machining (AWJM) on aluminium alloy AA 6351, using taguchi based Grey Relational Analysis (GRA) is been reported. The water pressure, traverse speed and stand-off-distance were chosen as the process parameters in this study. An L9 orthogonal matrix array is used for the experimental plan. The performance characteristics which include surface roughness (Ra) and kerf angle (KA) are considered. The results indicate that surface roughness and kerf angle decreases, with increase in water pressure and decrease in traverse speed. Analysis of variance (ANOVA) illustrates that traverse speed is the major parameter (89.7%) for reducing surface roughness and kerf angle, followed by water pressure (5.85%) and standoff distance (2%) respectively. The confirmation results reveal that surface roughness reduced by 16% and kerf angle reduced by 47%. Furthermore, the surfaces were examined under scanning electron microscope (SEM) and atomic force microscope (AFM) for a detailed study



Sign in / Sign up

Export Citation Format

Share Document