scholarly journals Double Crystallization and Phase Separation in Polyethylene—Syndiotactic Polypropylene Di-Block Copolymers

Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2589
Author(s):  
Claudio De Rosa ◽  
Rocco Di Girolamo ◽  
Alessandra Cicolella ◽  
Giovanni Talarico ◽  
Miriam Scoti

Crystallization and phase separation in the melt in semicrystalline block copolymers (BCPs) compete in defining the final solid state structure and morphology. In crystalline–crystalline di-block copolymers the sequence of crystallization of the two blocks plays a definitive role. In this work we show that the use of epitaxial crystallization on selected crystalline substrates allows achieving of a control over the crystallization of the blocks by inducing crystal orientations of the different crystalline phases and a final control over the global morphology. A sample of polyethylene-block-syndiotactic polypropylene (PE-b-sPP) block copolymers has been synthesized with a stereoselective living organometallic catalyst and epitaxially crystallized onto crystals of two different crystalline substrates, p-terphenyl (3Ph) and benzoic acid (BA). The epitaxial crystallization on both substrates produces formation of highly ordered morphologies with crystalline lamellae of sPP and PE highly oriented along one direction. However, the epitaxial crystallization onto 3Ph should generate a single orientation of sPP crystalline lamellae highly aligned along one direction and a double orientation of PE lamellae, whereas BA crystals should induce high orientation of only PE crystalline lamellae. Thanks to the use of the two selective substrates, the final morphology reveals the sequence of crystallization events during cooling from the melt and what is the dominant event that drives the final morphology. The observed single orientation of both crystalline PE and sPP phases on both substrates, indeed, indicates that sPP crystallizes first onto 3Ph defining the overall morphology and PE crystallizes after sPP in the confined interlamellar sPP regions. Instead, PE crystallizes first onto BA defining the overall morphology and sPP crystallizes after PE in the confined interlamellar PE regions. This allows for discriminating between the different crystalline phases and defining the final morphology, which depends on which polymer block crystallizes first on the substrate. This work also shows that the use of epitaxial crystallization and the choice of suitable substrate offer a means to produce oriented nanostructures and morphologies of block copolymers depending on the composition and the substrates.

2019 ◽  
Vol 10 (46) ◽  
pp. 6254-6259 ◽  
Author(s):  
Ellis Hancox ◽  
Evelina Liarou ◽  
James S. Town ◽  
Glen R. Jones ◽  
Siân A. Layton ◽  
...  

Fluoro-polyacrylic acid block copolymers with vary narrow dispersity are shown to have sub-2 nm domain sizes on phase separation.


1977 ◽  
Vol 50 (4) ◽  
pp. 688-703 ◽  
Author(s):  
J. R. Wolfe

Abstract The properties of elastomeric tetramethylene terephthalate/polyether terephthalate copolymers have been related to the chemical structure, chain length, and concentration in the copolymers of the PTMEG-, PEG-, and PPG-derived polyether units. Low-temperature properties and tear strength are dependent on all three polyether-related variables. Melting point, hardness, and stress at 100% elongation appear to be independent of polyether structure. Polyether glycols of low MW volatilize during copolymer preparation. High-MW polyethers tend to crystallize when present in the copolymers. Polyether glycols of intermediate MW (∼ 1000) yield copolymers with the best resistance to low-temperature stiffening. Copolymer synthesis is most difficult with PPG as the polyether glycol. Inherent viscosities are low, and phase separation occurs at lower polyether MW than with PTMEG or PEG. The PEG-based copolymers exhibit high water swell, particularly at intermediate and high PEG MW. The PTMEG-based copolymers are easiest to synthesize and exhibit the best overall combination of properties.


2010 ◽  
Vol 2 (8) ◽  
pp. 2218-2225 ◽  
Author(s):  
Hartmut R. Fischer ◽  
Karin Tempelaars ◽  
Aat Kerpershoek ◽  
Theo Dingemans ◽  
M. Iqbal ◽  
...  

2013 ◽  
Vol 1518 ◽  
pp. 47-52
Author(s):  
S.V. Stefanovsky ◽  
B.S. Nikonov ◽  
B.I. Omelyanenko ◽  
K.M. Fox ◽  
J.C. Marra

ABSTRACTGlasses in the Al2O3-B2O3-Fe2O3-Na2O-SiO2 system were produced at a temperature of 1150 °C, annealed, and examined using XRD and SEM/EDX. Surfaces of same samples were additionally heat-treated and etched with HCl. The pristine samples were X-ray amorphous and rather homogeneous except the B1 sample that contained trace crystalline phases of carnegieite/nepheline and spinel. Corrosion of these glasses via an etching treatment proceeds by a conventional mechanism with damage of their surface layers, however, the B2 glass exhibits a “drop-type” microstructure after etching that suggests occurrence of liquid-liquid phase separation.


2007 ◽  
Vol 336-338 ◽  
pp. 1829-1832 ◽  
Author(s):  
Qing Bo Tian ◽  
Yue Wang ◽  
Xue Tao Yue ◽  
Yan Sheng Yin ◽  
Su Hua Fan

The phase-separation and the crystallization of SiO2-MgO-Al2O3-K2O-Fe2O3-F glass were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electron probe of microanalyzers (EPMA). The results reveal that the varieties and the morphology of crystalline phases formed depend sensitively on the thermal treatment schedules. During the isothermal treatments, the crystalline phases of mica, mica and iron oxide (FeFeO4), and FeFeO4 as major crystals are precipitated in the glass samples heat-treated at 900, 1000 and 1050°C respectively. However, the two-step heat treatment beginning at 900°C for 1h and subsequently followed at 1050°C for 1h leads to the precipitation of mica crystal and no any signs of FeFeO4 crystalline phase is observed. Also the morphology of sample is different from that of the isothermally treated glass at 1050°C, but is similar from that of sample at 900°C. A “worm”-shaped phase-separation is observed in the sample heated at 800°C for 0.5h, which exhibits different morphology from that of droplet- or globule-shape conventionally discerned. EPMA results show that the incorporation of Fe2O3 accelerates accumulation of fluorine element, promoting the phase-separation and the crystallization of the present glass.


2011 ◽  
Vol 23 (2) ◽  
pp. 315-341 ◽  
Author(s):  
KARL B. GLASNER

Above the spinodal temperature for micro-phase separation in block co-polymers, asymmetric mixtures can exhibit random heterogeneous structure. This behaviour is similar to the sub-critical regime of many pattern-forming models. In particular, there is a rich set of localised patterns and associated dynamics. This paper clarifies the nature of the bifurcation diagram of localised solutions in a density functional model of A−B diblock mixtures. The existence of saddle-node bifurcations is described, which explains both the threshold for heterogeneous disordered behaviour as well the onset of pattern propagation. A procedure to generate more complex equilibria by attaching individual structures leads to an interwoven set of solution curves. This results in a global description of the bifurcation diagram from which dynamics, in particular self-replication behaviour, can be explained.


Sign in / Sign up

Export Citation Format

Share Document