scholarly journals DPD Study on the Interfacial Properties of PEO/PEO-PPO-PEO/PPO Ternary Blends: Effects of Pluronic Structure and Concentration

Polymers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2866
Author(s):  
Dongmei Liu ◽  
Meiyuan Yang ◽  
Danping Wang ◽  
Xueying Jing ◽  
Ye Lin ◽  
...  

Using the method of dissipative particle dynamics (DPD) simulations, we investigated the interfacial properties of PEO/PEO-PPO-PEO/PPO ternary blends composed of the Pluronics L64(EO13PO30EO13), F68(EO76PO29EO76), F88(EO104PO39EO104), or F127(EO106PO70EO106) triblock copolymers. Our simulations show that: (i) The interfacial tensions (γ) of the ternary blends obey the relationship γF68 < γL64 < γF88 < γF127, which indicates that triblock copolymer F68 is most effective in reducing the interfacial tension, compared to L64, F88, and F127; (ii) For the blends of PEO/L64/PPO and the F64 copolymer concentration ranging from ccp = 0.2 to 0.4, the interface exhibits a saturation state, which results in the aggregation and micelle formation of F64 copolymers added to the blends, and a lowered efficiency of the L64 copolymers as a compatibilizer, thus, the interfacial tension decreases slightly; (iii) For the blends of PEO/F68/PPO, elevating the Pluronic copolymer concentration can promote Pluronic copolymer enrichment at the interfaces without forming the micelles, which reduces the interfacial tension significantly. The interfacial properties of the blends contained the PEO-PPO-PEO triblock copolymer compatibilizers are, thus, controlled by the triblock copolymer structure and the concentration. This work provides important insights into the use of the PEO-PPO-PEO triblock copolymer as compatibilizers in the PEO and PPO homopolymer blend systems.

Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2333
Author(s):  
Dongmei Liu ◽  
Kai Gong ◽  
Ye Lin ◽  
Huifeng Bo ◽  
Tao Liu ◽  
...  

We explored the effects of the repulsion parameter (aAB) and chain length (NHA or NHB) of homopolymers on the interfacial properties of An/Ax/2BxAx/2/Bm ternary polymeric blends using dissipative particle dynamics (DPD) simulations. Our simulations show that: (i) The ternary blends exhibit the significant segregation at the repulsion parameter (aAB = 40). (ii) Both the interfacial tension and the density of triblock copolymer at the center of the interface increase to a plateau with increasing the homopolymer chain length, which indicates that the triblock copolymers with shorter chain length exhibit better performance as the compatibilizers for stabilizing the blends. (iii) For the case of NHA = 4 (chain length of homopolymers An) and NHB (chain length of homopolymers Bm) ranging from 16 to 64, the blends exhibit larger interfacial widths with a weakened correlation between bead An and Bm of homopolymers, which indicates that the triblock copolymer compatibilizers (Ax/2BxAx/2) show better performance in reducing the interfacial tension. The effectiveness of triblock copolymer compatibilizers is, thus, controlled by the regulation of repulsion parameters and the homopolymer chain length. This work raises important considerations concerning the use of the triblock copolymer as compatibilizers in the immiscible homopolymer blend systems.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1516
Author(s):  
Dongmei Liu ◽  
Kai Gong ◽  
Ye Lin ◽  
Tao Liu ◽  
Yu Liu ◽  
...  

We investigated the interfacial properties of symmetric ternary An/AmBm/Bn and An/Am/2BmAm/2/Bn polymeric blends by means of dissipative particle dynamics (DPD) simulations. We systematically analyzed the effects of composition, chain length, and concentration of the copolymers on the interfacial tensions, interfacial widths, and the structures of each polymer component in the blends. Our simulations show that: (i) the efficiency of the copolymers in reducing the interfacial tension is highly dependent on their compositions. The triblock copolymers are more effective in reducing the interfacial tension compared to that of the diblock copolymers at the same chain length and concentration; (ii) the interfacial tension of the blends increases with increases in the triblock copolymer chain length, which indicates that the triblock copolymers with a shorter chain length exhibit a better performance as the compatibilizers compared to that of their counterparts with longer chain lengths; and (iii) elevating the triblock copolymer concentration can promote copolymer enrichment at the center of the interface, which enlarges the width of the phase interfaces and reduces the interfacial tension. These findings illustrate the correlations between the efficiency of copolymer compatibilizers and their detailed molecular parameters.


Soft Matter ◽  
2021 ◽  
Author(s):  
Alexander Kantardjiev

We carried out a series of coarse-grained molecular dynamics liposome-copolymer simulations with varying extent of copolymer concentration in an attempt to understand the effect of copolymer structure and concentration on vesicle self-assembly and stability.


Author(s):  
Sergey Bublik ◽  
Sarina Bao ◽  
Merete Tangstad ◽  
Kristian Etienne Einarsrud

AbstractThe present study has investigated the influence of sulfur content in synthetic FeMn and SiMn from 0 to 1.00 wt pct on interfacial properties between these ferroalloys and slags. The effect of experimental parameters such as temperature and holding time was evaluated. Interfacial interaction between ferroalloys and slags was characterized by interfacial tension and apparent contact angle between metal and slag, measured based on the Young–Laplace equation and an inverse modelling approach developed in OpenFOAM. The results show that sulfur has a significant influence on both interfacial tension and apparent contact angle, decreasing both values and promoting the formation of a metal-slag mixture. Despite the fact that sulfur was added only to the ferroalloys, most of sulfur is distributed into slag after reactions with the metal phase. Increasing the maximum experimental temperature in the sessile drop furnace also resulted in a decrease of both interfacial properties, resulting in higher mass transfer rates and intensive reactions between metal and slag. The effect of holding time demonstrated that after reaching equilibrium in FeMn-slag and SiMn-slag systems (both with and without sulfur), interfacial tension and apparent contact angle remain constant.


1991 ◽  
Vol 249 ◽  
Author(s):  
H. Watanabe ◽  
S.S. Patel ◽  
J.F. Argillier ◽  
E.E. Parsonage ◽  
J. Mays ◽  
...  

ABSTRACTColloidal processing offers a way to minimize undesired heterogeneities in the fabrication of advanced ceramics. Stable dispersions can be created by manipulation of interparticle potential. Adsorption of diblock copolymer amphiphiles provides a way to obtain long range repulsive interactions between particles, at comparatively low polymer coverage, thereby enabling suspension stabilization. In this study we investigate the relationship between copolymer structure and adsorbed layer characteristics, and specifically, the nature and range of interactions. We find that the surface density and interaction range are governed by a characteristic measure of the copolymer asymmetry. In the case of copolymers where one of the blocks is ionic, and therefore water soluble, we find a hysteresis in the interaction forces, indicating a meta-stable state of the polymer layer.


2021 ◽  
Author(s):  
Zhe Sun ◽  
Xiaodong Kang ◽  
Shanshan Zhang

Abstract In recent years, ASP flooding has been widely applied and obtained the remarkable effect. During the ASP flooding process, the oil composition has a great effect on the interfacial tension, which plays a vital role in the oil displacement effect. However, through literature research, few have made a profound study on the effect of oil composition on the recover rate. As a result, it is very important to carry out relevant research. For the oil sample (I) and sample (II) from two different regions in DQ, the crude oil composition analysis is first carried out. After the mixing of oil system and ASP system, the distribution ratio of agent is obtained. Furthermore, the oil composition does have an impact on the interfacial tension and recovery rate, and its influence law is explored. Finally, its application is introduced and analyzed. Research results show that, compare with sample (II), the sample (I) has more heavy components. After the mixing of oil samples and ASP, more surfactant and alkali enters into the oil phase of sample (I). Therefore, based on the similar miscibility principle, the surfactant is more likely to leave the oil water interface and enter into the oil phase of sample (I), which has a negative effect on reducing the interfacial tension. Furthermore, the phenomenon of chromatographic separation aggravates the adsorption of surfactant on rock surface. Therefore, combining the above factors, the oil increment effect of sample (I) becomes worse. In additional, the results of field test verify the laboratory experiments. From the above research, we canconclude that the relationship between crude oil composition and ASP flooding is of great significance. As a result, this paper has carried out a lot of related research work and revealed the internal relationship between the two, which has important practical significance to improve the effect of increasing oil and reducing water in ASP flooding technology.


Sign in / Sign up

Export Citation Format

Share Document