scholarly journals Synthesis of 1,1,3,3,5,5-Hexamethyl-7,7-diorganocyclotetrasiloxanes and Its Copolymers

Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 28
Author(s):  
Evgeniya V. Talalaeva ◽  
Aleksandra A. Kalinina ◽  
Evgeniy V. Chernov ◽  
Alina G. Khmelnitskaia ◽  
Marina A. Obrezkova ◽  
...  

This paper reports a method for the synthesis of 1,1,3,3,5,5-hexamethyl-7,7-diorganocyclotetrasiloxanes by the interaction of 1,5-disodiumoxyhexamethylsiloxane with dichlorodiorganosilanes such as methyl-, methylvinyl-, methylphenyl-, diphenyl- and diethyl dichlorosilanes. Depending on the reaction conditions, the preparative yield of the target cyclotetrasiloxanes is 55–75%. Along with mixed cyclotetrasiloxanes, the proposed method leads to the formation of polymers with regular alternation of diorganosylil and dimethylsylil units. For example, in the case of dichlorodiethylsilane, 70% content of linear poly(diethyl)dimethylsiloxanes with regular alternation of units can be achieved in the reaction product. Using 7,7-diethyl-1,1,3,3,5,5-hexamethylcyclotetrasiloxane as an example, the prospects of the mixed cycle in copolymer preparation in comparison with the copolymerization of octamethyl- and octaethylcyclotetrasiloxanes are shown.

RSC Advances ◽  
2021 ◽  
Vol 11 (23) ◽  
pp. 14093-14102
Author(s):  
Hans R. Kricheldorf ◽  
Steffen M. Weidner ◽  
Andreas Meyer

By variation of reaction conditions and catalysts a cyclic tin(ii) compound was found, which enables synthesis of high melting (>190 °C) poly(l-lactide) via ROP of l-lactide, whereas the technically used catalyst SnOct2 does not show such a performance.


Author(s):  
James F. Hainfeld ◽  
Kyra M. Alford ◽  
Mathias Sprinzl ◽  
Valsan Mandiyan ◽  
Santa J. Tumminia ◽  
...  

The undecagold (Au11) cluster was used to covalently label tRNA molecules at two specific ribonucleotides, one at position 75, and one at position 32 near the anticodon loop. Two different Au11 derivatives were used, one with a monomaleimide and one with a monoiodacetamide to effect efficient reactions.The first tRNA labeled was yeast tRNAphe which had a 2-thiocytidine (s2C) enzymatically introduced at position 75. This was found to react with the iodoacetamide-Aun derivative (Fig. 1) but not the maleimide-Aun (Fig. 2). Reaction conditions were 37° for 16 hours. Addition of dimethylformamide (DMF) up to 70% made no improvement in the labeling yield. A high resolution scanning transmission electron micrograph (STEM) taken using the darkfield elastically scattered electrons is shown in Fig. 3.


2010 ◽  
Vol 1247 ◽  
Author(s):  
Rocío Calderón-Villajos ◽  
Carlos Zaldo ◽  
Concepción Cascales

AbstractControlled reaction conditions in simple, template-free hydrothermal processes yield Tm-Lu2O3 and Tm-GdVO4 nanocrystals with well-defined specific morphologies and sizes. In both oxide families, nanocrystals prepared at pH 7 reaction media exhibit photoluminescence in ∼1.95 μm similar to bulk single crystals. For the lowest Tm3+ concentration (0.2 % mol) in GdVO4 measured 3H4 and 3F4 fluorescence lifetimes τ are very near to τrad.


Author(s):  
Alex L. Bagdasarian ◽  
Stasik Popov ◽  
Benjamin Wigman ◽  
Wenjing Wei ◽  
woojin lee ◽  
...  

Herein we report the 3,5bistrifluoromethylphenyl urea-catalyzed functionalization of unactivated C–H bonds. In this system, the urea catalyst mediates the formation of high-energy vinyl carbocations that undergo facile C–H insertion and Friedel–Crafts reactions. We introduce a new paradigm for these privileged scaffolds where the combination of hydrogen bonding motifs and strong bases affords highly active Lewis acid catalysts capable of ionizing strong C–O bonds. Despite the highly Lewis acidic nature of these catalysts that enables triflate abstraction from sp<sup>2</sup> carbons, these newly found reaction conditions allow for the formation of heterocycles and tolerate highly Lewis basic heteroaromatic substrates. This strategy showcases the potential utility of dicoordinated vinyl carbocations in organic synthesis.<br>


2020 ◽  
Author(s):  
Alex L. Bagdasarian ◽  
Stasik Popov ◽  
Benjamin Wigman ◽  
Wenjing Wei ◽  
woojin lee ◽  
...  

Herein we report the 3,5bistrifluoromethylphenyl urea-catalyzed functionalization of unactivated C–H bonds. In this system, the urea catalyst mediates the formation of high-energy vinyl carbocations that undergo facile C–H insertion and Friedel–Crafts reactions. We introduce a new paradigm for these privileged scaffolds where the combination of hydrogen bonding motifs and strong bases affords highly active Lewis acid catalysts capable of ionizing strong C–O bonds. Despite the highly Lewis acidic nature of these catalysts that enables triflate abstraction from sp<sup>2</sup> carbons, these newly found reaction conditions allow for the formation of heterocycles and tolerate highly Lewis basic heteroaromatic substrates. This strategy showcases the potential utility of dicoordinated vinyl carbocations in organic synthesis.<br>


2019 ◽  
Author(s):  
Shiori Date ◽  
Kensei Hamasaki ◽  
Karen Sunagawa ◽  
Hiroki Koyama ◽  
Chikayoshi Sebe ◽  
...  

<div>We report here a catalytic, Markovnikov selective, and scalable synthetic method for the synthesis of saturated sulfur heterocycles, which are found in the structures of pharmaceuticals and natural products, in one step from an alkenyl thioester. Unlike a potentially labile alkenyl thiol, an alkenyl thioester is stable and easy to prepare. The powerful Co catalysis via a cobalt hydride hydrogen atom transfer and radical-polar crossover mechanism enabled simultaneous cyclization and deprotection. The substrate scope was expanded by the extensive optimization of the reaction conditions and tuning of the thioester unit.</div>


2020 ◽  
Author(s):  
Xin Yi See ◽  
Benjamin Reiner ◽  
Xuelan Wen ◽  
T. Alexander Wheeler ◽  
Channing Klein ◽  
...  

<div> <div> <div> <p>Herein, we describe the use of iterative supervised principal component analysis (ISPCA) in de novo catalyst design. The regioselective synthesis of 2,5-dimethyl-1,3,4-triphenyl-1H- pyrrole (C) via Ti- catalyzed formal [2+2+1] cycloaddition of phenyl propyne and azobenzene was targeted as a proof of principle. The initial reaction conditions led to an unselective mixture of all possible pyrrole regioisomers. ISPCA was conducted on a training set of catalysts, and their performance was regressed against the scores from the top three principal components. Component loadings from this PCA space along with k-means clustering were used to inform the design of new test catalysts. The selectivity of a prospective test set was predicted in silico using the ISPCA model, and only optimal candidates were synthesized and tested experimentally. This data-driven predictive-modeling workflow was iterated, and after only three generations the catalytic selectivity was improved from 0.5 (statistical mixture of products) to over 11 (> 90% C) by incorporating 2,6-dimethyl- 4-(pyrrolidin-1-yl)pyridine as a ligand. The successful development of a highly selective catalyst without resorting to long, stochastic screening processes demonstrates the inherent power of ISPCA in de novo catalyst design and should motivate the general use of ISPCA in reaction development. </p> </div> </div> </div>


Sign in / Sign up

Export Citation Format

Share Document