scholarly journals Robust Scheduling Optimization Model for Multi-Energy Interdependent System Based on Energy Storage Technology and Ground-Source Heat Pump

Processes ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 27 ◽  
Author(s):  
Zhongfu Tan ◽  
Hongwu Guo ◽  
Hongyu Lin ◽  
Qingkun Tan ◽  
Shenbo Yang ◽  
...  

The energy consumed by buildings makes up a significant part of total social energy consumption. The energy use rate of the traditional cooling and heating unit is low. A distributed cooling, heating, and power (CHP) system can achieve cascade use of energy and reduce the long-distance transportation of energy. Along with the wide use of ground-source heat pumps and energy storage technology, the combined cooling, heating, and power (CCHP) system coupled with a ground-source heat pump and energy storage technology is increasingly being used. Firstly, we proposed the construction of a CCHP system driven by distributed energy resources (DERs) including three subsystems of an electricity subsystem, a CCHP subsystem and an auxiliary heating subsystem as the object of study in this paper. Besides, with the goals of reducing carbon emissions, increasing energy efficiency, and minimizing system cost, a constraint mechanism based on the DOM-PSO (dynamic object method/particle swarm optimization) algorithm was applied. Finally, taking Tianjin Eco-City as an example, we used the PSO algorithm to analyze the operating characteristics of the cold and power cogeneration system under the uncertainty of the wind power output. The simulation results show that the joint optimization mode operation strategy can balance the results of different optimization modes by increasing the robust coefficient of wind power. Of all scenarios examined, the CCHP system coupled with the ground-source heat pump and energy storage technology performed best.

2013 ◽  
Vol 391 ◽  
pp. 261-264
Author(s):  
Xiao Ning Xu ◽  
Xue Song Zhou

The classification and application range of energy storage technology are briefly introduced. Challenges for large-scale wind power integration are summarized. With regard to the problems in system stability, low voltage ride-through ability of wind the turbine generator, and power quality, the paper elaborated some solutions based on energy storage technology, and analyzed their advantages and disadvantages. With the character of energy storage technology combined, the paper put forward some advice of energy storage technology applying in wind power integration.


Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1274 ◽  
Author(s):  
Arif Widiatmojo ◽  
Sasimook Chokchai ◽  
Isao Takashima ◽  
Yohei Uchida ◽  
Kasumi Yasukawa ◽  
...  

The cooling of spaces in tropical regions, such as Southeast Asia, consumes a lot of energy. Additionally, rapid population and economic growth are resulting in an increasing demand for space cooling. The ground-source heat pump has been proven a reliable, cost-effective, safe, and environmentally-friendly alternative for cooling and heating spaces in various countries. In tropical countries, the presumption that the ground-source heat pump may not provide better thermal performance than the normal air-source heat pump arises because the difference between ground and atmospheric temperatures is essentially low. This paper reports the potential use of a ground-source heat pump with horizontal heat exchangers in a tropical country—Thailand. Daily operational data of two ground-source heat pumps and an air-source heat pump during a two-month operation are analyzed and compared. Life cycle cost analysis and CO2 emission estimation are adopted to evaluate the economic value of ground-source heat pump investment and potential CO2 reduction through the use of ground-source heat pumps, in comparison with the case for air-source heat pumps. It was found that the ground-source heat pumps consume 17.1% and 18.4% less electricity than the air-source heat pump during this period. Local production of heat pumps and heat exchangers, as well as rapid regional economic growth, can be positive factors for future ground-source heat pump application, not only in Thailand but also southeast Asian countries.


2019 ◽  
Vol 111 ◽  
pp. 01070
Author(s):  
Gheorghe Ilisei ◽  
Tiberiu Catalina ◽  
Robert Gavriliuc

Having in sight the need for a strong reduction in CO2 emissions and the fluctuation of the price of fossil fuels, the ground source resources alongside with the ground source heat pumps are becoming more and more widespread for meeting the heating/cooling demand of several types of buildings. This article targets to develop the thermal modelling of borehole heat storage systems. Trying to emphasize some certain advantages of a GSHP (ground source heat pump) with vertical boreholes, a case study analysing a residential solar passive house is presented. The numerical results are produced using different modelling software like DesignBuilder, EED (Earth Energy Designer) and a sizing method for the length of the boreholes (ASHRAE method). The idea of sizing the length of boreholes (main design parameter and good index in estimating the system’s cost) using two different methods shows the reliability of this modelling tool. The study shows that borehole’s length of a GSHP system can trigger a difference in electricity consumption up to 22%. Moreover, this sensitivity analysis aims to prove that the design of the whole system can be done beforehand just using modeling tools, without performing tests in-situ.


2020 ◽  
Vol 103 (2) ◽  
pp. 003685042092168
Author(s):  
Weisong Zhou ◽  
Peng Pei ◽  
Ruiyong Mao ◽  
Haibin Qian ◽  
Yanbing Hu ◽  
...  

In order to take advantage of different forms of heat pumps and to mitigate thermal imbalance underground caused by long-term operation of ground source heat pumps, hybrid ground source heat pump systems have received an increasing attention. In this research, based on the fact that abundant groundwater resources are commonly available in karst regions, a new strategy is introduced for selecting and determining hybrid ground source heat pump capacity. Five scenarios of hybrid ground source heat pump system coupling groundwater source heat pumps with other supplementary heat pumps are proposed in this article to provide appropriate options to eliminate heat buildup under different hydrogeologic conditions. Methodologies for sizing and selection are established. Then, a case study of techno-economic analysis was performed for a project in the karst region in South China. The results showed that these scenarios can effectively mitigate heat buildup, and under the hydrogeologic condition in the case study. Compared to the solo ground-coupled heat pump solution, the optimal solution (Solution 4 in this study) can reduce the annual costs by 16.10% and reduce the capital investment by 60%. Methodologies developed in this study are beneficial for selecting appropriate approaches to mitigate heat buildup and enhance competitiveness of ground source heat pumps.


2014 ◽  
Vol 919-921 ◽  
pp. 1735-1738 ◽  
Author(s):  
Peng Gong ◽  
Jian Tang

Ground-Source Heat Pump (PSHP) was verified by US Environmental Protection Agency (EPA) as one of the most efficient air conditioning systems on present market. It has a higher efficiency than other heating systems from 50% to 70%, and a higher efficiency than other cooling systems from 30% to 50%. The working principle of PSHP determines its low operating costs. By comparing the total energy efficiency, the existing groundwater heat pump total energy efficiency is the highest, about 115%. The total energy efficiency for soil-source heat pump is up to 100%. But traditional air conditioning is far less than the level. Articles present a research on Ground-Source Heat Pump system and its cost with a scientific and objective principles. Ground-source heat pump is a new central air conditioning system of Low-carbon energy saving. Due to the high technical content, function requirement, and installation difficulty , the average initial investment of ground-source heat pump is much higher than traditional central air conditioning. Taking into account the added costs of heating systems based on traditional central air-conditioning, such as boilers, it will not deviate too much from it.


2013 ◽  
Vol 700 ◽  
pp. 231-234
Author(s):  
Lian Yang ◽  
Yong Hong Huang ◽  
Liu Zhang

There are many ground source heat pumps in engineering construction application. However, Research on heat exchanger models of single-hole buried vertical ground source heat pump mostly focuses on single U-tube ground heat exchangers other than double U-tube ones in China currently. Compared with single U-tubes, double U-tubes have the heat transfer particularity of asymmetry. Therefore, the use of the traditional single tube models would have large error in the simulation of the actual double U-tube heat exchangers. This paper frames a three-dimensional heat transfer model for the vertical single-hole buried double u-tube heat exchanger in a ground source heat pump system. The model considers the performance of U-bube material and uses a dual coordinate system and makes the control elemental volumes superimposed.


2020 ◽  
Vol 182 ◽  
pp. 03004
Author(s):  
Jintian Li ◽  
Yunzhe Ji ◽  
Bo Wang ◽  
Ling Xie

The load properties of underground engineering have an important influence on operating characteristics of ground source heat pump system. It has important reference value for design and operation management that Simulation analyzing operating conditions of ground source heat pump system under dynamic load conditions. It took an underground engineering as an example for dynamic load calculation in the paper, and simulated operating characteristics of ground source heat pump system under three operating conditions. The calculation results show that the engineering maintenance and management period is conducive to the recovery of soil temperature, and it improves the COP value of the unit. Some measures should be taken to restore soil temperature for long-term continuous operation of underground engineering. The use of heat recovery to make domestic hot water can relieve the problem of soil thermal imbalance to some extent. It is beneficial to improve heat pump unit performance.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Renliang Liu ◽  
Yong Chen ◽  
Zhe Tan ◽  
Chao Liu ◽  
Kun Yang ◽  
...  

With the increasing consumption of energy, the efficiency of energy utilization urgently needs to be further improved. At present, the coordinated optimization control of the integrated energy system of multiple types of cooling, heating, and power equipment is an important way to improve the comprehensive energy efficiency of the regional power grid and reduce the operating cost of the power grid. Aiming at this scenario, this paper establishes a fine energy storage model by analyzing the uncertainty of wind power output and considering the influence of low temperature and other conditions on the energy storage device in the energy storage side. On the load side, the influence of comprehensive demand response of electricity and heat on system operation is analyzed, and a combined cold, heat, and electricity supply system including renewable energy and energy storage device is established. Aiming at the optimal total cost of the integrated energy cooling and heating triple power system collaborative optimization control, the crow search algorithm is used to iteratively optimize the configuration model of the triple power system. The four models are considered in the article include groundless heat pump and energy storage, excluding joint demand response, including ground source heat pump and traditional energy storage model, excluding joint demand response, including ground source heat pump and fine energy storage model, excluding joint demand response, including ground source heat pump and fine energy storage model, taking into account the joint demand response. The simulation results show that the cooperative optimization control strategy of the combined cooling, heating, and power system with renewable energy and fine energy storage device model can enhance the system’s schedulable space, improve the comprehensive energy utilization efficiency, and have considerable economic benefits.


Sign in / Sign up

Export Citation Format

Share Document