scholarly journals The Study of a Multicriteria Decision Making Model for Wave Power Plant Location Selection in Vietnam

Processes ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 650
Author(s):  
Chia-Nan Wang ◽  
Nguyen Thanh ◽  
Chih-Chiang Su

With about a 7% average annual economic growth rate in Vietnam, the demand for electricity production is increasing, and, with more than 3000 km of coastline, the country has great potential for developing wave energy sources to meet such electricity production. This energy source, also known as renewable energy, comes from tides, wind, heat differences, flows, and waves. Both wind and wave energy are considered to have the most potential for energy sources in Vietnam. Just as hydropower projects are controversial due to depleting water resources and regulating floods, nuclear power projects cause safety concerns. To overcome this problem, Vietnamese scientists are considering using abundant wave energy resources for electricity. Nowadays, the ocean energy sector offers many new technologies to help minimize carbon dioxide emissions (CO2) in the living environment. Further, many countries already have wave power plants. In this research, an integrated model, combining the fuzzy analytical network process (FANP) and the technique for order of preference by similarity to ideal solution (TOPSIS), is proposed for wave energy plant location selection. As a result, Con Co (SITE3) is determined the best site for wave energy production. The primary aim of this study is to provide insight into site selection problems for renewable energy investments of Vietnam. The contribution of this research is to propose a fuzzy multiple-criteria decision-making (MCDM) model for site selection in the renewable energy sector. The proposed model also can address different complex problems in location selection; it is also a flexible design model for considering the evaluation criteria; further, it is applicable to site selection of other renewable energies in the world.

Symmetry ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 548 ◽  
Author(s):  
Chia-Nan Wang ◽  
Chih-Chiang Su ◽  
Van Nguyen

The demands for energy in general and electrical power in particular in the process of industrialization–modernization in Vietnam are increasing. Although other renewable energy sources such as wind and solar power have been prioritized, they cannot compensate for the shortages of electricity in Vietnam; moreover, traditional energy sources in Vietnam are not endless and will soon reach exhaustion. Nowadays, the government has chosen a solution to maximize domestic energy resources, i.e., develop renewable energy combined with importing coal and gas in appropriate proportions with the construction of nuclear power plants (NPP), which may be the optimal solution to ensure energy security, environmental protection, and sustainable development. However, site selection for construction of a nuclear power plant is one of the most difficult decisions that management faces. Thus, the authors proposed multicriteria decision-making (MCDM), including a fuzzy analytic network process (FANP) and technique for order preference by similarity of an ideal solution (TOPSIS) for NPP location selection in Vietnam. In the first stages of this research, the weight of all criteria and subcriteria will be calculated by an ANP model using fuzzy logic. A TOPSIS model is proposed for ranking all potential locations in the final stage. The results reveal that Binh Thuan is the best place for building an NPP in Vietnam. The contributions of this research include a fuzzy multicriteria decision-making (F-MCDM) approach for NPP site selection in Vietnam. This research also utilizes the evolution of a new approach that is flexible and practical for the decision-maker and provides useful guidelines for NPP site selection in countries around the world.


Author(s):  
Jose V. Taboada ◽  
Hirpa G. Lemu

This paper describes a wave energy analysis of North Atlantic waters and provides an overview of the available resources. The analysis was conducted using a scatter diagram data combined with wave statistics and empirical parameters given by wave height and periods. Such an overview is instrumental for modelling of wave energy sources, design of wave energy converter (WEC) devices and determination of locations of the devices. Previous survey of wave energy resources widely focused on determination of the reliability on installations of WECs. Though the renewable energy source that can be utilized from the waves is huge, the innovative work in design and development of WECs is insignificant and the available technologies still require further optimization. Furthermore, the wave potential of North Atlantic waters is not sufficiently studied and documented. Closer review of the literature also shows that wave energy conversion technology, compared with other conversion machines of renewable energy sources such as wind energy and solar energy, seems still immature and most of the research and development efforts in this direction are limited in scope. The design of energy converters is also highly dictated by the wave energy resource intensity distribution, which varies from North to South hemisphere. The immaturity of the technology can be attributed to several factors. Since there are a number of uncertainties on the accuracy of wave data, the design, location and installation of WECs face a number of challenges in terms of their service life, structural performance and topological configuration. As a result, collection and assessment of wave characteristics and the wave state conditions data serve as key inputs for development of robust, reliable, operable and affordable wave energy converters. The fact that a number of variables are involved in wave distribution characteristics and the extraction of wave power, treating these variables in the design process imposes immense challenges for the design optimization and hence the optimum energy conversion. The conversion machines are expected to extract as high wave energy as possible while their structural performance is ensured. The study reported in this paper is to analyse wave data over several years of return periods with a detailed validation for wave statistics and wave power. The analysis is intended to contribute in better understanding of the wave characteristics with influencing parameters that can serve as design optimization parameters. A method is proposed to conduct a survey and analysis of the available wave energy resources and the potential at cited locations. The paper concludes that wave energy data accuracy is the baseline for project scoping, coastal and offshore design, and environmental impact assessments.


2007 ◽  
Vol 11 (3) ◽  
pp. 27-42 ◽  
Author(s):  
Igor Raguzin ◽  
Zeljko Tomsic

The energy sector reform in the Republic of Croatia (started 2001), which comprises restructuring, liberalization, privatization, and changes in the overall energy sector, has a significant effect on the possibilities of introducing and increasing the share of renewable energy sources (RES). The adoption of a new legislative framework within the context of reforming Croatia?s energy sector is of key importance for further development and for the future or RES utilization. The Electricity Market Act sets out the le- gal obligation to purchase electricity produced from RES in the manner that a quota or a minimum obligatory share of RES in electricity production is determined by a Government ordinance combined with Tariff system for the production of electricity from renewable energy sources and co-generation. Consequently, on the one hand, incentive funds needed to cover increased costs of production from RES will be collected from customers through the supplier and distributed to privileged producers (feed-in-tariffs, purchase is guaranteed to RES producers on known terms) through the Market Opera- tor. On the other hand, RES investment projects will be encouraged by pur- pose-specific government subsidy and by the Environmental Protection and Energy Efficiency Fund (out of public budget). By applying new energy legislation and associated by-laws (coming into force in 2007), RES projects in Croatia will be provided with a complete and stable legal framework as well as support through incentive measures which will equitably value environmental, social and other benefits of RES use.


2021 ◽  
Author(s):  
Aleksander Wasiuta

Abstract BackgroundThe characteristic feature of modern energy sector in the EU is the development of environmentally friendly technologies based on renewable energy sources (RES). The use of alternative and RES contributes to resolving not only energy efficiency issues, but many of the environmental, economic and social problems. RES are also one of the priorities of the world's low carbon policy and reducing CO2 emissions into the atmosphere. Growing electrical energy consumption and increasing integration of RES in power systems have led to new challenges, thus it is required to investigate and properly analyze the impact of integrated RES on the power system as a substitute for fossil fuel resources.ResultsThe aim of the article is to show the possibilities of developing RES in Poland in the context of environmental protection, energy self-sufficiency and international obligations. The depletion of primary energy sources and the increase in emissions of greenhouse gases to the atmosphere forces undertaking certain activities, aimed at seeking substitutes for fossil fuels. According to the author’s analysis, RES are the best and safest substitutes for traditional energy resources such as fossil fuel.ConclusionsThe author examines electricity production mix in EU counties and compares it to Polish energy sector. Taking into consideration the transmission network density in Poland, while energy sector changes its structure and expands, the mix of technologies deployed to produce electricity determines the associated burden on transmission networks. Polish energy sector development in the context of modernization of transmission grid provides an opportunity for investors to prepare the energy system for increasing the share of renewable energy sources. In the process of implementing the appropriate solution, the experiences of other countries that have significantly increased the share of renewable energy in the past could be used. This article presents the main areas of action that may facilitate the further integration of different energy sources in the specific context of Poland's changing energy system. Not all integration options will be important for Poland at the same time.


2018 ◽  
Vol 8 (11) ◽  
pp. 2069 ◽  
Author(s):  
Chia-Nan Wang ◽  
Ying-Fang Huang ◽  
Yu-Chien Chai ◽  
Van Nguyen

In the context of increasing energy demands in Vietnam, and as a result of the limited supply of domestic energy (oil/gas/coal reserves are exhausted), the potential for renewable energy sources in Vietnam is significant. Thus, building wind power plants in Vietnam is necessary. Access to this type of renewable energy not only contributes to society’s energy supply but also helps to save energy and reduce environmental pollution. Although some works have reviewed applications of the Multi-Criteria Decision Making (MCDM) model in wind power plant site selection, little research has focused on this problem in a fuzzy environment. This is the reason why a hybrid Fuzzy Analytic Hierarchy Process (FAHP) and The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) are developed for wind power plant site selection in Vietnam. In the first stages of this research, an FAHP model is proposed for determining the weight of each potential location for building a wind power plant, based on qualitative and quantitative factors. A TOPSIS is applied for ranking all potential alternatives in the final stage. The authors collected data from seven locations, which have good conditions for investment in a wind power plant. The results indicate that Binh Thuan (Binh Thuan Province is located on coast of South Central Vietnam) is the best place for building a wind power plant in Vietnam. The contributions of this work proposed an MCDM approach under fuzzy environments for wind power plant location selection in Vietnam. This paper also resides in the evolution of a new approach that is flexible and practical for a decision-maker. This work also provides a useful guideline for wind power plant location selection in others countries.


2014 ◽  
Vol 66 (2) ◽  
Author(s):  
R. Wilbert ◽  
V. Sundar ◽  
S. A. Sannasiraj

The reduction of the greenhouse gas emission generated through the usage of fossil fuel has become quite vital forcing us to look for alternative renewable energy sources. Among the renewable energy sources, ocean wave energy looks promising leading to worldwide involvement of researchers in the refinements of a number of the concepts. The conversion of energy available in ocean waves requires an interface device to interact with the kinetic and kinematic phenomena under the waves. These devices are known as wave energy converters (WECS). Among the available WECS oscillating water column (OWC) stands out as one of most promising concept. Though the OWC concept has emerged from laboratory model type to prototype plant, the high cost of production makes it less attractive in commercialism. This necessitates further refinement in the configuration of OWC concept to make it more attractive leading to economically competent. This can be achieved either by improving the efficiency or by integrating it with coastal protective breakwaters, viz., offshore detached breakwaters. The double chamber oscillating water is an innovative concept which can bring forth both efficiency and additional stability once it becomes an integral part of coastal breakwater. This system captures the high magnitude of dynamic pressure as the excitation force for the oscillation inside the OWC. The trajectory of flow pattern can provide additional vertical load which will enhance the stability factor of the breakwater. In this paper the wave power absorption capacity of a 1:20 scale physical model under varying regular wave characteristics is reported. In this insightful study the objective assessment over the hydrodynamic performance reveals the parametric influence over wave power absorption capacity of the device.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2862
Author(s):  
Mika Korkeakoski

Renewable Energy Sources (RES) have become increasingly desirable worldwide in the fight against global climate change. The sharp decrease in costs of especially wind and solar photovoltaics (PV) have created opportunities to move from dependency on conventional fossil fuel-based electricity production towards renewable energy sources. Renewables experience around 7% (in 2018) annual growth rate in the electricity production globally and the pace is expected to further increase in the near future. Cuba is no exception in this regard, the government has set an ambitious renewable energy target of 24% RES of electricity production by the year 2030. The article analyses renewable energy trajectories in Isla de la Juventud, Cuba, through different future energy scenarios utilizing EnergyPLAN tool. The goal is to identify the best fit and least cost options in transitioning towards 100% electric power systemin Isla de la Juventud, Cuba. The work is divided into analysis of (1) technical possibilities for five scenarios in the electricity production with a 40% increase of electricity consumption by 2030: Business As Usual (BAU 2030, with the current electric power system (EPS) setup), VISION 2030 (according to the Cuban government plan with 24% RES), Advanced Renewables (ARES, with 50% RES), High Renewables (HiRES, with 70% RES), and Fully Renewables (FullRES, with 100% RES based electricity system) scenarios and (2) defining least cost options for the five scenarios in Isla de la Juventud, Cuba. The results show that high penetration of renewables is technically possible even up to 100% RES although the best technological fit versus least cost options may not favor the 100% RES based systems with the current electric power system (EPS) setup. This is due to realities in access to resources, especially importation of state of the art technological equipment and biofuels, financial and investment resources, as well as the high costs of storage systems. The analysis shows the Cuban government vision of reaching 24% of RES in the electricity production by 2030 can be exceeded even up to 70% RES based systems with similar or even lower costs in the near future in Isla de la Juventud. However, overcoming critical challenges in the economic, political, and legal conditions are crucially important; how will the implementation of huge national capital investments and significant involvement of Foreign Direct Investments (FDI) actualize to support achievement of the Cuban government’s 2030 vision?


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1164 ◽  
Author(s):  
Indre Siksnelyte-Butkiene ◽  
Edmundas Kazimieras Zavadskas ◽  
Dalia Streimikiene

Different power generation technologies have different advantages and disadvantages. However, if compared to traditional energy sources, renewable energy sources provide a possibility to solve the climate change and economic decarbonization issues that are so relevant today. Therefore, the analysis and evaluation of renewable energy technologies has been receiving increasing attention in the politics of different countries and the scientific literature. The household sector consumes almost one third of all energy produced, thus studies on the evaluation of renewable energy production technologies in households are very important. This article reviews the scientific literature that have used multiple-criteria decision-making (MCDM) methods as a key tool to evaluate renewable energy technologies in households. The findings of the conducted research are categorized according to the objectives pursued and the criteria on which the evaluation was based are discussed. The article also provides an overview and in-depth analysis of MCDM methods and distinguishes the main advantages and disadvantages of using them to evaluate technologies in households.


2013 ◽  
Vol 4 (2) ◽  
Author(s):  
Aleksandra Kanevče ◽  
Igor Tomovski ◽  
Ljubčo Kocarev

In this paper we analyze the impact of the renewable energy sources on the overall electric power system of the Republic of Macedonia. Specifically, the effect of the photovoltaic power plants is examined. For this purpose we developed an electricity production optimization model, based on standard network flow model. The renewable energy sources are included in the model of Macedonia based on hourly meteorological data. Electricity producers that exist in 2012 are included in the base scenario. Two more characteristic years are analyzed, i.e. 2015 and 2020. The electricity producers planned to be constructed in these two years (which include the renewable energy sources) are also included. The results show that the renewable energy sources introduce imbalance in the system when the minimum electricity production is higher than the electricity required by the consumers. But, in these critical situations the production from photovoltaic energy sources is zero, which means that they produce electricity during the peak load, and do not produce when the consumption is at minimum.


Sign in / Sign up

Export Citation Format

Share Document