scholarly journals Experimental Study on Spray Breakup in Turbulent Atomization Using a Spiral Nozzle

Processes ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 911 ◽  
Author(s):  
Ondřej Krištof ◽  
Pavel Bulejko ◽  
Tomáš Svěrák

Spiral nozzles are widely used in wet scrubbers to form an appropriate spray pattern to capture the polluting gas/particulate matterwith the highest possible efficiency. Despite this fact, and a fact that it is a nozzle with a very atypical spray pattern (a full cone consisting of three concentric hollow cones), very limited amount of studies have been done so far on characterization of this type of nozzle. This work reports preliminary results on the spray characteristics of a spiral nozzle used for gas absorption processes. First, we experimentally measured the pressure impact footprint of the spray generated. Then effective spray angles were evaluated from the photographs of the spray and using the pressure impact footprint records via Archimedean spiral equation. Using the classical photography, areas of primary and secondary atomization were determined together with the droplet size distribution, which were further approximated using selected distribution functions. Radial and tangential spray velocity of droplets were assessed using the laser Doppler anemometry. The results show atypical behavior compared to different types of nozzles. In the investigated measurement range, the droplet-size distribution showed higher droplet diameters (about 1 mm) compared to, for example, air assisted atomizers. It was similar for the radial velocity, which was conversely lower (max velocity of about 8 m/s) compared to, for example, effervescent atomizers, which can produce droplets with a velocity of tens to hundreds m/s. On the contrary, spray angle ranged from 58° and 111° for the inner small and large cone, respectively, to 152° for the upper cone, and in the measured range was independent of the inlet pressure of liquid at the nozzle orifice.

2020 ◽  
Vol 63 (6) ◽  
pp. 1925-1937
Author(s):  
Fei Xyza B. Asuncion ◽  
Daniel L. Brabec ◽  
Mark E. Casada ◽  
Ronaldo G. Maghirang ◽  
Frank H. Arthur ◽  
...  

HighlightsHandheld sprayers generated larger droplets and wider droplet size distributions than compressed gas sprayers.Sprayers with higher pressure and nozzles with wider spray angle produced smaller droplets.Droplet size distribution influenced spray coverage, mass concentration, deposition, and sprayer efficacy.The handheld sprayers had less spray coverage and efficiency than the compressed gas sprayers.The deposition at different locations was influenced by the volume of the space, aerosol dosage, and spray time.Abstract. Aerosol insecticides, including pyrethrins, can be used as methyl bromide replacements to control stored product insects inside flour mills and rice mills. The effectiveness of aerosol application for insect control requires knowing the spray characteristics of the equipment to be used and understanding factors that influence the effectiveness of insecticide application. The objectives of this study, as part of efforts to optimize aerosol applications, were to evaluate the characteristics of six aerosol delivery systems (two handheld sprayers and compressed gas sprayer systems fitted with two types of manifolds and two types of nozzles), estimate the dispersion and deposition of aerosol in a simulated stored product facility, and determine how the dispersion and deposition are affected by the characteristics of the sprayers. Results showed that the spray systems differed significantly in spray characteristics. The compressed gas sprayers generated significantly smaller droplets, more uniform droplet size distribution, and better spray coverage than the handheld sprayers. The ellipsoidal nozzle produced significantly smaller droplets than the circular nozzle. While the type of manifold had no significant effect on deposition, higher aerosol dosage and spray time resulted in significantly higher deposition. Results of this study will be used to improve spray techniques for stored product insect control, to validate computational fluid dynamics modeling of aerosol application, and to improve testing methods in large-scale spray testing inside commercial facilities. Keywords: APS spectrometer, Droplet size distribution, HELOS KR-Vario, Mass deposition, Spray characteristics, Spray nozzles.


2006 ◽  
Vol 16 (6) ◽  
pp. 673-686 ◽  
Author(s):  
Laszlo E. Kollar ◽  
Masoud Farzaneh ◽  
Anatolij R. Karev

Author(s):  
Jian Wang ◽  
Jichuan Wu ◽  
Shouqi Yuan ◽  
Wei-Cheng Yan

Abstract Previous work showed that particle behaviors in ultrasonic atomization pyrolysis (UAP) reactor have a great influence on the transport and collection of particles. In this study, the effects of droplet behaviors (i.e. droplet collision and breakage) and solvent evaporation on the droplet size, flow field and collection efficiency during the preparation of ZnO particles by UAP were investigated. The collision, breakage and solvent evaporation conditions which affect the droplet size distribution and flow pattern were considered in CFD simulation based on Eulerian-Lagrangian method. The results showed that droplet collision and breakage would increase the droplet size, broaden the droplet size distribution and hinder the transport of droplets. Solvent evaporation obviously changed the flow pattern of droplets. In addition, both droplet behaviors and solvent evaporation reduced the collection efficiency. This study could provide detail information for better understanding the effect of droplet behaviors and solvent evaporation on the particle production process via UAP reactor.


Sign in / Sign up

Export Citation Format

Share Document