scholarly journals Integrated Process Design and Control for Smart Grid Coordinated IGCC Power Plants Using Economic Linear Optimal Control

Processes ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 288 ◽  
Author(s):  
Jin Zhang ◽  
Sofia Garcia Fracaro ◽  
Donald J. Chmielewski

The Integrated Gasification Combined Cycle (IGCC) possesses a number of advantages over traditional power generation plants, including increased efficiency, flex-fuel, and carbon capture. A lesser-known advantage of the IGCC system is the ability to coordinate with the smart grid. The idea is that process modifications can enable dispatch capabilities in the sense of shifting power production away from periods of low electricity price to periods of high price and thus generate greater revenue. The work begins with a demonstration of Economic Model Predictive Control (EMPC) as a strategy to determine the dispatch policy by directly pursuing the objective of maximizing plant revenue. However, the numeric nature of EMPC creates an inherent limitation when it comes to process design. Thus, Economic Linear Optimal Control (ELOC) is proposed as a surrogate for EMPC in the formulation of the integrated design and control problem for IGCC power plants with smart grid coordination.

Author(s):  
Andrea Ciani ◽  
John P. Wood ◽  
Anders Wickström ◽  
Geir J. Rørtveit ◽  
Rosetta Steeneveldt ◽  
...  

Abstract Today gas turbines and combined cycle power plants play an important role in power generation and in the light of increasing energy demand, their role is expected to grow alongside renewables. In addition, the volatility of renewables in generating and dispatching power entails a new focus on electricity security. This reinforces the importance of gas turbines in guaranteeing grid reliability by compensating for the intermittency of renewables. In order to achieve the Paris Agreement’s goals, power generation must be decarbonized. This is where hydrogen produced from renewables or with CCS (Carbon Capture and Storage) comes into play, allowing totally CO2-free combustion. Hydrogen features the unique capability to store energy for medium to long storage cycles and hence could be used to alleviate seasonal variations of renewable power generation. The importance of hydrogen for future power generation is expected to increase due to several factors: the push for CO2-free energy production is calling for various options, all resulting in the necessity of a broader fuel flexibility, in particular accommodating hydrogen as a future fuel feeding gas turbines and combined cycle power plants. Hydrogen from methane reforming is pursued, with particular interest within energy scenarios linked with carbon capture and storage, while the increased share of renewables requires the storage of energy for which hydrogen is the best candidate. Compared to natural gas the main challenge of hydrogen combustion is its increased reactivity resulting in a decrease of engine performance for conventional premix combustion systems. The sequential combustion technology used within Ansaldo Energia’s GT36 and GT26 gas turbines provides for extra freedom in optimizing the operation concept. This sequential combustion technology enables low emission combustion at high temperatures with particularly high fuel flexibility thanks to the complementarity between its first stage, stabilized by flame propagation and its second (sequential) stage, stabilized by auto-ignition. With this concept, gas turbines are envisaged to be able to provide reliable, dispatchable, CO2-free electric power. In this paper, an overview of hydrogen production (grey, blue, and green hydrogen), transport and storage are presented targeting a CO2-free energy system based on gas turbines. A detailed description of the test infrastructure, handling of highly reactive fuels is given with specific aspects of the large amounts of hydrogen used for the full engine pressure tests. Based on the results discussed at last year’s Turbo Expo (Bothien et al. GT2019-90798), further high pressure test results are reported, demonstrating how sequential combustion with novel operational concepts is able to achieve the lowest emissions, highest fuel and operational flexibility, for very high combustor exit temperatures (H-class) with unprecedented hydrogen contents.


2019 ◽  
Vol 12 (7) ◽  
pp. 2161-2173 ◽  
Author(s):  
Rebecca L. Siegelman ◽  
Phillip J. Milner ◽  
Eugene J. Kim ◽  
Simon C. Weston ◽  
Jeffrey R. Long

As natural gas supplies a growing share of global primary energy, new research efforts are needed to develop adsorbents for carbon capture from gas-fired power plants alongside efforts targeting emissions from coal-fired plants.


Author(s):  
Dilip K. Mukherjee

In several industrial processes, various hydrocarbons, such as low BTU blast furnace gas, syngas, Naphtha, heavy oil and condensate, are available as by-products or residues. Burning such unconventional fuels for combined cycle power generation can be attractive in certain countries due to their low prices or availability compared to natural gas or distillate. In this paper, design and operating experience of combined cycle power plants burning such unconventional fuels, e.g. Bao Shan in China burning LBTU gas, GVK in India burning Naphtha and Api in Italy burning medium Btu gas from heavy oil (refinery bottom) gasification etc. are discussed. The high degree of manufacturers’ ability to develop such projects and design the required equipment — burners/combustors, CC power train and control systems — is illustrated. In addition, the development of Naphtha and condensate burner for GT13E2 is described in short.


Author(s):  
Gurbakhash Bhander ◽  
Chun Wai Lee ◽  
Matthew Hakos

Abstract The growing worldwide interest in low carbon electric generation technologies has renewed interest in natural gas because it is considered a cleaner burning and more flexible alternative to other fossil fuels. Recent shale gas developments have increased natural gas production and availability while lowering cost, allowing a shift to natural gas for electricity production to be a cost-effective option. Natural gas generation in the U.S. electricity sector has grown substantially in recent years (over 31 percent in 2012, up from 17 percent in 1990), while carbon dioxide (CO2) emissions of the sector have generally declined. Natural gas-fired electrical generation offers several advantages over other fossil (e. g. coal, oil) fuel-fired generation. The combination of the lower carbon-to-hydrogen ratio in natural gas (compared to other fossil fuels) and the higher efficiency of natural gas combined cycle (NGCC) power plants (using two thermodynamic cycles) than traditional fossil-fueled electric power generation (using a single cycle) results in less CO2 emissions per unit of electricity produced. Furthermore, natural gas combustion results in considerably fewer emissions of air pollutants such as nitrogen oxides (NOx), sulfur dioxide (SO2), and particulate matter (PM). Natural gas is not the main option for deep de-carbonization. If deep reduction is prioritized, whether of the electricity sector or of the entire economy, there are four primary technologies that would be assumed to play a prominent role: energy efficiency equipment, nuclear power, renewable energy, and carbon capture and storage (CCS). However, natural gas with low carbon generation technologies can be considered a “bridge” to transition to these deep decarbonization options. This paper discusses the economics and environmental impacts, focusing on greenhouse gas (GHG) emissions, associated with alternative electricity production options using natural gas as the fuel source. We also explore pairing NGCC with carbon capture, explicitly examining the costs and emissions of amine absorption, cryogenic carbon capture, carbonate fuel cells, and oxy-combustion.


SPE Journal ◽  
2013 ◽  
Vol 19 (02) ◽  
pp. 239-248 ◽  
Author(s):  
Reza Ganjdanesh ◽  
Steven L. Bryant ◽  
Raymond L. Orbach ◽  
Gary A. Pope ◽  
Kamy Sepehrnoori

Summary The current approach to carbon capture and sequestration (CCS) from pulverized-coal-fired power plants is not economically viable without either large subsidies or a very high price on carbon. Current schemes require roughly one-third of a power-plant's energy for carbon dioxide (CO2) capture and pressurization. The production of energy from geopressured aquifers has evolved as a separate, independent technology from the sequestration of CO2 in deep, saline aquifers. A game-changing new idea is described here that combines the two technologies and adds another—the dissolution of CO2 into extracted brine that is then reinjected. A systematic investigation covering a range of conditions was performed to explore the best strategy for the coupled process of CO2 sequestration and energy production. Geological models of geopressured/geothermal aquifers were developed with available data from studies of Gulf Coast aquifers. These geological models were used to perform compositional reservoir simulations of realistic processes with coupled aquifer and wellbore models.


2007 ◽  
Vol 1041 ◽  
Author(s):  
Roberto Dones ◽  
Christian Bauer ◽  
Thomas Heck ◽  
Oliver Mayer-Spohn ◽  
Markus Blesl

AbstractThe NEEDS project of the European Commission (2004-2008) continues the ExternE series, aiming at improving and integrating external cost assessment, LCA, and energy-economy modeling, using multi-criteria decision analysis for technology roadmap up to year 2050. The LCA covers power systems suitable for Europe. The paper presents environmental inventories and cumulative results for selected representative evolutionary hard coal and lignite power technologies, namely the Ultra-Supercritical Pulverized Combustion (USC-PC) and Integrated Gasification Combined Cycle (IGCC) technologies. The power units are modeled with and without Carbon Capture and Storage (CCS). The three main technology paths for CO2 capture are represented, namely pre-combustion, post-combustion, and oxy-fuel combustion. Pipeline transport and storage in geological formations like saline aquifers and depleted gas reservoirs, which are the most likely solutions to be implemented in Europe, are modeled for assumed average conditions. The entire energy chains from fuel extraction through, when applicable, the ultimate sequestration of CO2, are assessed, using ecoinvent as background LCA database.The results show that adding CCS to fossil power plants, although resulting in a large net decrease of the CO2 effluents to the atmosphere per unit of electricity, is likely to produce substantially more GHG than claimed by near-zero emission power plant promoters when the entire energy chain is accounted for, especially for post-combustion capture technologies and hard coal as a fuel. Besides, the lower net power plant efficiencies lead to higher consumption rate of non-renewable fossil fuel. Furthermore, consideration of the full spectrum of environmental burdens besides greenhouse gas (GHG) results in a less definite picture of the energy chain with CCS than obtained by just focusing on GHG reduction.


Sign in / Sign up

Export Citation Format

Share Document