scholarly journals Study on the Stability of Produced Water from Alkali/Surfactant/Polymer Flooding under the Synergetic Effect of Quartz Sand Particles and Oil Displacement Agents

Processes ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 315 ◽  
Author(s):  
Bin Huang ◽  
Chen Wang ◽  
Weisen Zhang ◽  
Cheng Fu ◽  
Haibo Liu ◽  
...  

With the wide application of ASP (alkali/surfactant/polymer) flooding oil recovery technology, the produced water from ASP flooding has increased greatly. The clay particles carried by crude oil in the process of flow have a synergetic effect with oil displacement agents in the produced water, which increases the treatment difficulty of produced water. The stability of produced water is decided by the stability of oil droplets in the ASP-flooding-produced water system. The oil content, Zeta potential, interfacial tension and oil droplet size are important parameters to characterize the stability of produced water. In this paper, the changes of the oil content, Zeta potential, interfacial tension and oil droplet size of ASP flooding oily wastewater under the synergetic effect of different concentrations of quartz sand particles and oil displacement agents were studied by laboratory experiments. The experimental results show that the negatively charged quartz sand particles can absorb active substances in crude oil and surfactant molecules in the water phase and migrate to the oil–water interface, which increases the repulsion between quartz sand particles, decreasing the oil–water interfacial tension. Thus, the stability of oil droplets is enhanced, and the aggregation difficulty between oil droplets and quartz sand particles is increased. With the continually increasing quartz sand concentration, quartz sand particles combine with surfactant molecules adsorbed on the oil–water interface to form an aggregate. Meanwhile, the polymer molecules crimp from the stretching state, and the number of them surrounding the surface of the flocculation structure is close to saturation, which makes the oil droplets and quartz sand particles prone to aggregation, and the carried active substances desorb from the interface, resulting in the instability of the produced water system. The research on the synergetic effect between quartz sand particles and oil displacement agents is of great significance for deepening the treatment of ASP-produced water.

Polymers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 395 ◽  
Author(s):  
Bin Huang ◽  
Xiaohui Li ◽  
Wei Zhang ◽  
Cheng Fu ◽  
Ying Wang ◽  
...  

The issue of pipeline scaling and oil-water separation caused by treating produced water in Alkali/Surfactant/Polymer (ASP) flooding greatly limits the wide use of ASP flooding technology. Therefore, this study of the demulsification-flocculation mechanism of oil-water emulsion in ASP flooding produced water is of great importance for ASP produced water treatment and its application. In this paper, the demulsification-flocculation mechanism of produced water is studied by simulating the changes in oil-water interfacial tension, Zeta potential and the size of oil droplets of produced water with an added demulsifier or flocculent by laboratory experiments. The results show that the demulsifier molecules can be adsorbed onto the oil droplets and replace the surfactant absorbed on the surface of oil droplets, reducing interfacial tension and weakening interfacial film strength, resulting in decreased stability of the oil droplets. The demulsifier can also neutralize the negative charge on the surface of oil droplets and reduce the electrostatic repulsion between them which will be beneficial for the accumulation of oil droplets. The flocculent after demulsification of oil droplets by charge neutralization, adsorption bridging, and sweeping all functions together. Thus, the oil droplets form aggregates and the synthetic action by the demulsifier and the flocculent causes the oil drop film to break up and oil droplet coalescence occurs to separate oil water.


2020 ◽  
Vol 4 (4) ◽  
pp. 1-7
Author(s):  
Zhang D

The basic properties of alkali‒surfactant‒polymer (ASP) flooding produced water and effect of oil displacing agent on the stability of flooding produced water were obtained, through measuring and analysing water quality, oil content-settling time relationship and oil displacing agent-oil droplet size relationship of Zhong-106, Zhong-312, Zhong-417, Nan 4-8 and Bei 2-7 flooding produced water from Daqing Oilfield. The addition of ternary oil displacement agent to ASP flooding produced water greatly increases the difficulty of oil-water separation, and higher the concentration, worse the separation effect after standing. The effects of alkali, surfactant, and polymer on oil-water stability in simulated ASP flooding produced water were studied respectively. The ASP flooding produced water after 48 hours of settling formed a trace amount of nano-oil droplets, also accompanied by the accumulation and separation of a part of the oil droplets.


2021 ◽  
Author(s):  
Yanchi Liu ◽  
Guodong Wu ◽  
Erdong Yao ◽  
Wei Zuo ◽  
Longhao Zhao ◽  
...  

Abstract In tight heavy oil reservoirs, the formation of W/O emulsion will significantly increase the viscosity of the whole fluid-system. Meanwhile, the emulsion droplets tend to block the core pores, which will reduce the flow oil and water. In this paper, the terms of oil-water ratio, pH and other factors on heavy oil emulsification of tight sandstone in a block of Xinjiang were studied. Furthermore, in order to study the emulsification behavior in large and small pores, a large tube and a small tube are used to investigate how the hole apertures affect heavy oil emulsification. Finally, the demulsification time and dehydration rate were recorded, and the interfacial tension and viscosity were tested. The results show that heavy oil is easy to self-emulsify with water to form W/O emulsion, and it’s extremely stable. When the oil-water ratio is 3:7, the viscosity of the emulsions reaches 307 mPa·s, which is 38 times higher than that of crude oil. Acidic and alkaline conditions are benefit of demulsification and the stability of the emulsions is reduced. In small tube with higher interfacial tension, the demulsification time is shortened, and the stability of the emulsions is reduced.


RSC Advances ◽  
2020 ◽  
Vol 10 (26) ◽  
pp. 15124-15131 ◽  
Author(s):  
Hao Sun ◽  
Xin He ◽  
Qian Tang ◽  
Xiaobing Li

A recyclable functional microsphere was developed which significantly enhances oil–water separation and decreases chemical demulsifier consumption.


2002 ◽  
Vol 211 (2-3) ◽  
pp. 275-284 ◽  
Author(s):  
Shubo Deng ◽  
Renbi Bai ◽  
J.Paul Chen ◽  
Gang Yu ◽  
Zhanpeng Jiang ◽  
...  

Author(s):  
Shubo Deng ◽  
Gang Yu ◽  
Zhanpeng Jiang ◽  
Ruiquan Zhang ◽  
Yen Peng Ting

2013 ◽  
Vol 411-414 ◽  
pp. 2983-2988
Author(s):  
Hong Bao Liang ◽  
Xiao Na Dong ◽  
Ying Chen ◽  
Lei Zhang ◽  
Xiang Dong Di

Abstract: The Polymer is one of the efficient ways to increase to the crude oil production rate,but this method has big impact on the properties of crude oil. We studied the differences between the Polymer flooding sample and H2O flooding sample experimentally.The adsorption method was adopted to analyze the content of resins and asphaltenes in the oil samples. By measuring the exhalation rate of the H2O, the stability of the emulsifying properties which are affected by the resins and asphaltenes were studied. Then, we measured the viscosity and the interfacial tension of the crude oil samples to further explore the differences.The results shows that the contents of resins and asphaltenes and the stability of the emulsion in the Polymer flooding oil sample are all higher than that in the H2O flooding oil sample, the interfacial tension and the viscosity of the produced water in the Polymer flooding oil sample are all lower than that in the H2O flooding oil sample.


Sign in / Sign up

Export Citation Format

Share Document