scholarly journals Finite Element Study of Magnetohydrodynamics (MHD) and Activation Energy in Darcy–Forchheimer Rotating Flow of Casson Carreau Nanofluid

Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1185 ◽  
Author(s):  
Bagh Ali ◽  
Ghulam Rasool ◽  
Sajjad Hussain ◽  
Dumitru Baleanu ◽  
Sehrish Bano

Here, a study for MHD (magnetohydrodynamic) impacts on the rotating flow of Casson Carreau nanofluids is considered. The temperature distribution is associated with thermophoresis, Brownian motion, and heat source. The diffusion of chemically reactive specie is investigated with Arrhenius activation energy. The governing equations in the 3D form are changed into dimensionless two-dimensional form with the implementation of suitable scaling transformations. The Variational finite element procedure is harnessed and coded in Matlab script to obtain the numerical solution of the coupled non-linear partial differential problem. The variation patterns of Sherwood number, Nusselt number, skin friction coefficients, velocities, concentration, and temperature functions are computed to reveal the physical nature of this examination. It is seen that higher contributions of the magnetic force, Casson fluid, and rotational fluid parameters cause a raise in the temperature like thermophoresis and Brownian motion does but also causes a slowing down in the primary as well as secondary velocities. The FEM solutions show an excellent correlation with published results. The current study has significant applications in the biomedical, modern technologies of aerospace systems, and relevance to energy systems.

Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1555 ◽  
Author(s):  
Bagh Ali ◽  
Rizwan Ali Naqvi ◽  
Amir Haider ◽  
Dildar Hussain ◽  
Sajjad Hussain

A study for MHD (magnetohydrodynamic) impacts on the rotating flow of Casson nanofluids is considered. The concentration and temperature distributions are related along with the double diffusion Cattaneo–Christov model, thermophoresis, and Brownian motion. The governing equations in the 3D form are changed into dimensionless two-dimensional form with the implementation of suitable scaling transformations. The variational finite element procedure is harnessed and coded in Matlab script to obtain the numerical solution of the coupled nonlinear partial differential problem. The variation patterns of Sherwood number, Nusselt number, skin friction coefficients, velocities, concentration, and temperature functions are computed to reveal the physical nature of this examination. It is seen that higher contributions of the magnetic force, Casson fluid, and rotational fluid parameters cause to raise the temperature like thermophoresis and Brownian motion does but causes slowing the primary as well as secondary velocities. The FEM solutions showing an excellent correlation with published results. The current study has significant applications in the biomedical, modern technologies of aerospace systems, and relevance to energy systems.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
K. S. Srinivasa Babu ◽  
A. Parandhama ◽  
R. Bhuvana Vijaya

AbstractNumerical approach for a non-linear mixed convective magnetohydrodynamic two-dimensional Carreau nanofluid through an exponentially permeable stretching surface with viscous dissipation and velocity slip under the influence of Arrhenius activation energy in chemical reaction is reported. The effects of thermophoresis and Brownian motion are considered. The governing nonlinear equations of this model are transmuted into ODE’s through similarity variables and solved them with a shooting method based on R-K 4th order. Responses of fluid velocity, transfer rates (heat and mass) versus pertinent parameters of the problem for suitable values are obtained and the computational calculations for friction coefficient, Nusselt number and Sherwood number for the both suction and injections regions are presented in plots and tables. It is found that fluid velocity is an increasing function of Weissenberg number. Momentum boundary layer thickness is depressed by magnetic field impact. Increasing trend in Carreau fluid temperature is noticed due to larger values of thermophoresis and Brownian motion effects. Concentration field is a decreasing function of Brownian motion but an increasing function of thermophoresis. Activation energy augments the concentration curves and lowered by Schmidt number. Comparison of the results is made with already published results and we got good agreement.


Mathematics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 25
Author(s):  
Bagh Ali ◽  
Rizwan Ali Naqvi ◽  
Amna Mariam ◽  
Liaqat Ali ◽  
Omar M. Aldossary

The below work comprises the unsteady flow and enhanced thermal transportation for Carreau nanofluids across a stretching wedge. In addition, heat source, magnetic field, thermal radiation, activation energy, and convective boundary conditions are considered. Suitable similarity functions use to transmuted partial differential formulation into the ordinary differential form, which is solved numerically by the finite element method and coded in Matlab script. Parametric computations are made for faster stretch and slowly stretch to the surface of the wedge. The progressing value of parameter A (unsteadiness), material law index ϵ, and wedge angle reduce the flow velocity. The temperature in the boundary layer region rises directly with exceeding values of thermophoresis parameter Nt, Hartman number, Brownian motion parameter Nb, ϵ, Biot number Bi and radiation parameter Rd. The volume fraction of nanoparticles rises with activation energy parameter EE, but it receded against chemical reaction parameter Ω, and Lewis number Le. The reliability and validity of the current numerical solution are ascertained by establishing convergence criteria and agreement with existing specific solutions.


2011 ◽  
Vol 368-373 ◽  
pp. 930-933
Author(s):  
Wei Hou ◽  
Shuan Hai He ◽  
Cui Juan Wang ◽  
Gang Zhang

Being aimed to deformation problem of pre-stressed concrete thin-walled multi-room box girders exposed to co-action of fire and load, on the basis of enthalpy conduction model and thermo-mechanics parameters, the finite element procedure was applied to analyze the deformation of three spans pre-stressed concrete thin-walled multi-room box girders exposed to co-action of fire and load. In conclusion, the deflection is obvious under action of the variation width and fire load model.


1998 ◽  
Vol 120 (1) ◽  
pp. 24-34 ◽  
Author(s):  
C. Fu ◽  
D. L. McDowell ◽  
I. C. Ume

A finite element procedure using a semi-implicit time-integration scheme has been developed for a cyclic thermoviscoplastic constitutive model for Pb-Sn solder and OFHC copper, two common metallic constituents in electronic packaging applications. The scheme has been implemented in the commercial finite element (FE) code ABAQUS (1995) via the user-defined material subroutine, UMAT. Several single-element simulations are conducted to compare with previous test results, which include monotonic tensile tests, creep tests, and a two-step ratchetting test for 62Sn36Pb2Ag solder; a nonproportional axial-torsional test and a thermomechanical fatigue (TMF) test for OFHC copper. At the constitutive level, we also provide an adaptive time stepping algorithm, which can be used to improve the overall computation efficiency and accuracy especially in large-scale FE analyses. We also compare the computational efforts of fully backward Euler and the proposed methods. The implementation of the FE procedure provides a guideline to apply user-defined material constitutive relations in FE analyses and to perform more sophisticated thermomechanical simulations. Such work can facilitate enhanced understanding thermomechanical reliability issue of solder and copper interconnects in electronic packaging applications.


2020 ◽  
Vol 9 (4) ◽  
pp. 336-345
Author(s):  
Silpi Hazarika ◽  
Sahin Ahmed

The impact of heat transfer in micropolar fluid may be developed due to its various promising applications in engineering, bio-medical sciences, geo-thermal progression, spherical storage tanks, nuclear power plants, automobile sectors etc. Motivated by such significance, the current study is to expound the influences of micropolar Casson fluid flow over a solid sphere with Brownian motion, thermophoretic force and buoyancy force surrounded by porous medium. The adopted model having complex PDE’s are reduced to dimensionless ODE’s by utilizing proper similarity solutions. A numerical approach have been carried out for velocity, micro rotation, temperature and concentration, the solutions are procured by Matlab Bvp4c code and plotted graphs for diverse involved parameters. An adequate result is acquired by an assessment with earlier available work. The effects of key parameters on surface drag coefficient, surface thermal flux and particles concentration flux are examined and displayed in tabular form. Grash of number raises the profiles of thermal flux and concentration flux where the buoyancy force is more dominant. Further, the obtained results indicate that the angular velocity is elevated near the surface of the sphere, and they behaves asymptotically far away from the surface due to the effect of micropolar parameter. Moreover, temperature and molar species concentration are enriched with upper values of micropolar factor. It is perceived that, augmented values of Casson parameter amplifies the velocity outline.


Sign in / Sign up

Export Citation Format

Share Document