scholarly journals A New Low-Cost and Reliable Method to Evaluate the Release of Hg0 from Synthetic Materials

Processes ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1282
Author(s):  
Marta Lazzaroni ◽  
Barbara Nisi ◽  
Daniele Rappuoli ◽  
Jacopo Cabassi ◽  
Orlando Vaselli

Mercury is a toxic and noxious element and is the only metal that naturally occurs as gas. One of the most challenging topics (included in the United Nations Minimata convention) is to understand the adsorption–release processes of manmade materials (e.g., concrete, bricks, tiles, painting). Adsorption of Hg by construction and demolition waste materials has recently been studied, but investigations on how much Hg0 can be released from these products are rather poor. The abandoned mining site of Abbadia San Salvatore (Siena, central Italy) where, for about one century, cinnabar was roasted to produce liquid mercury, is known for the high concentrations of (i) Hg0 in edifices and structures and (ii) total and leachate Hg in synthetic materials. In the present paper, a new, simple and low-cost method to measure the amount of GEM (Gaseous Elemental Mercury) released from anthropic materials (concrete, wall rocks, and tiles) located in the Hg0-rich environments of the former mining site, is proposed. The efficiency of a specific paint that was supposed to act as blocking agent to Hg0 was also tested.

2022 ◽  
Vol 137 ◽  
pp. 61-71
Author(s):  
A. Galderisi ◽  
G. Iezzi ◽  
G. Bianchini ◽  
E. Paris ◽  
J. de Brito

2017 ◽  
Vol 17 (11) ◽  
pp. 6883-6893 ◽  
Author(s):  
Antonella Macagnano ◽  
Viviana Perri ◽  
Emiliano Zampetti ◽  
Andrea Bearzotti ◽  
Fabrizio De Cesare ◽  
...  

Abstract. The combination of the affinity of gold for mercury and nanosized frameworks has allowed for the design and fabrication of novel kinds of sensors with promising sensing features for environmental applications. Specifically, conductive sensors based on composite nanofibrous electrospun layers of titania easily decorated with gold nanoparticles were developed to obtain nanostructured hybrid materials capable of entrapping and revealing gaseous elemental mercury (GEM) traces from the environment. The electrical properties of the resulting chemosensors were measured. A few minutes of air sampling were sufficient to detect the concentration of mercury in the air, ranging between 20 and 100 ppb, without using traps or gas carriers (LOD: 1.5 ppb). Longer measurements allowed the sensor to detect lower concentrations of GEM. The resulting chemosensors are expected to be low cost and very stable (due to the peculiar structure), requiring low power, low maintenance, and simple equipment.


Detritus ◽  
2021 ◽  
pp. 40-50
Author(s):  
Ababaikere Abudureheman ◽  
Paola Stabile ◽  
Michael Robert Carroll ◽  
Carlo Santulli ◽  
Eleonora Paris

Construction and Demolition Waste (CDW) originating from the rubble produced by the 2016 seismic events in the Marche Region (Central Italy) has been studied, focusing on its mineralogical and chemical characteristics, to investigate its recycling potentials as a component for eco-sustainable building material or in the glass industry. The aim was to obtain a full characterization of the behaviour of this material at high T in order to determine the most advantageous conditions for vitrification, considered as an effective process for volume reduction as well as for immobilization of potentially hazardous elements. Vitrification experiments, carried out with thermal treatments as function of temperature/duration/particle size and aimed at amorphization, were carried out under atmospheric conditions, at different temperatures (1000-1250°C) and durations (2-8 hours). The study demonstrated that mineralogical composition remains homogeneous for grainsize <4 mm, thus suggesting that no sieving is necessary for recycling of the fine fractions, which are the most difficult to treat. Vitrification, although not achieved for the CDW sample up to 1250°C, due to high-Ca and low-Si contents, demonstrated that this CDW can produce an interesting refractory material and a porous/insulating material. However, experiments showed that full vitrification can be easily achieved by mixing urban waste glass and CDW, suggesting applications in the glass industry. Based on the chemical and mineralogical features of the products, other significant upgrading alternatives of recycling the CDW in different fields of applications are highlighted.


2014 ◽  
Vol 798-799 ◽  
pp. 498-502
Author(s):  
Wilson Acchar ◽  
Jaquelígia B. Silva ◽  
Vamberto M. Silva ◽  
Luciano Costa Góis ◽  
Ana M. Segadães

In Brazil, the majority of construction and demolition waste materials (CDW) is sent to waste dumps or landfill sites. Having low cost applications in mind, this work has the purpose of investigating the effect of the incorporation of fired ceramic rubble reclaimed from CDW obtained directly from the building construction industry on the final properties of compressed earth blocks, which are especially interesting in low-income and marginalized communities. To this aim, clay-based mixtures containing up to 5 wt.% of ceramic rubble were prepared. Lime and cement were added as binders (6, 8, 10 and 12 wt.%). Cylindrical test pieces were produced by uniaxial compression and left to harden at ambient conditions for 7, 28 and 56 days. The hardened specimens were characterized in terms of microstructure (SEM), compressive strength, water absorption and wear resistance. The results obtained in physical and mechanical evaluation tests demonstrated that small contents of ceramic rubble from the building construction industry can easily be incorporated into compressed earth blocks without degradation of typical properties, enabling savings in cement addition.


2020 ◽  
Vol 10 (22) ◽  
pp. 8129
Author(s):  
Engerst Yedra ◽  
Daniel Ferrández ◽  
Carlos Morón ◽  
Edmundo Gómez

This work presents a new method to determine the evolution of the dynamic Young’s modulus (MOE) from small mechanical disturbances caused by cement mortar samples and whose value is collected using a low-cost Arduino accelerometer. The results obtained are correlated with measurements made using traditional ultrasound techniques, in addition to the evolution of MOE being related to the variation in mechanical properties that cement mortars experience over time. In this way, in this work, a secure application method is presented that allows us to advance the knowledge of construction materials with the incorporation of construction and demolition waste (CDW) and—more specifically—of cement mortars made with aggregates recycled from ceramic or concrete waste.


2021 ◽  
Vol 56 (3) ◽  
pp. 470-479
Author(s):  
Barbara Pavani Biju ◽  
André Nagalli ◽  
Edilberto Nunes De Moura

In Brazil, the disposal of construction and demolition waste (CDW) quite often occurs in inadequate places, resulting in social, economic, and environmental problems. This reflects the need for selecting appropriate areas for the disposal of this type of waste. These areas must follow local standards and regulations to protect human health and the environment. Considering that, this study is intended to indicate potentially suitable areas for CDW landfill deployment, known as Class A landfill in Brazil, supported by a GIS-MCDA based model. The GIS-MCDA technique, used as a basic tool to identify potentially suitable areas, has several advantages, such as low cost, reduced spatial data subjectivity, and fast decision-making process. The place chosen for this study is the Urban Central Core of the Metropolitan Area of Curitiba. By integrating GIS with MCDA techniques in this research study, it was possible to indicate potentially suitable areas for CDW disposal in this region.


2019 ◽  
Vol 29 (3) ◽  
pp. 63
Author(s):  
Awham M. Hameed ◽  
Mohammad T. Hamza

The recycling and reusing of waste materials to produce suitable materials is very important subjects to scientific research in world now, because the decrease natural resources and create a hole or risk in future of the world. The aim of our research to produce polymer concrete (PC) has high mechanical and physical characteristic. This PC was prepared by using the waste of aggregates and demolitions to make PC have good mechanical and physical characteristic with low cost as compared as cement concrete. In this research different types of construction and demolition waste were used as aggregates replacement (i.e. waste of cement/concrete debris, waste of ceramics and the waste of blocks) while the type of polymer resins (i.e. Epoxy) as cement replacements. The weight percentages of resin were changed within (20, 25 and 30) % to manufacture this polymer concrete. The tests we done like physical such as den-sity and mechanical such as compressive strength, flexural strength. Splitting tensile strength and Schmidt hammer rebound hardness.


Sign in / Sign up

Export Citation Format

Share Document