scholarly journals The Effects of Different Slurry Concentrations and Wire Speeds for Swinging and Non-Swinging Wire-Saw Machining

Processes ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1319
Author(s):  
Yao-Yang Tsai ◽  
Yi-Chian Chen ◽  
Yunn-Shiuan Liao ◽  
Chia-Chin Hsieh ◽  
Chung-Chen Tsao ◽  
...  

Slurry concentration and wire speed affect the yield and machining quality of ceramics (Al2O3) that are produced using wire-saw machining (WSM). This study determines the effect of slurry concentration and wire speed on the material removal rate (MRR), the machined surface roughness (SR), the kerf width, the wire wear and the flatness for swinging and non-swinging WSM. The experiments show that swinging WSM results in a higher machining efficiency than non-swinging WSM. WSM with swinging also achieves a peak MRR at a medium slurry concentration (25 wt%) and a higher wire speed (5.6 m/s) using the cutting conditions for the experimental region. However, slurry concentration and wire speed have no significant effect on the machined SR, the kerf width, the wire wear or the flatness for WSM with swinging mode.

Processes ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 1602
Author(s):  
Yao-Yang Tsai ◽  
Jihng-Kuo Ho ◽  
Wen-Hao Wang ◽  
Chia-Chin Hsieh ◽  
Chung-Chen Tsao ◽  
...  

Slicing ceramic (SC) is well-known as difficult-to-cut material. It is a hard and brittle material. The Grey-Taguchi method, which converts multiple response problems into a single response, is used to determine the effect of the process parameters for wire-sawing on multiple quality characteristics. The wire-sawing parameters include the wire tension (T), the slurry concentration (C), mixed grains mesh size (G), the wire speed (S), and the working load (P). The machining quality characteristics include a material removal rate (MRR), machined surface roughness (SR) of SC, kerf width (KW), wire wear (WW), and flatness (FT). An analysis of variance (ANOVA) is used to identify the mixed grains and slurry concentration that have a significant effect on multiple quality characteristics. The results of the ANOVA using the Grey-Taguchi method show that the optimum conditions are T2C1G1S2P1 (wire tension of 24 N, slurry concentration of 10% wt., mixed grains of #600 + #1000 mesh size, wire speed of 2.8 m/s, and working load of 1.27 N). The respective improvement in MRR, machined SR of SC, KW, WW, and FT is 2.43%, 2.36%, 1.08%, 2.33%, and 14.27%. The addition of #600 + #1000 mixed grains mesh size to the slurry improves the machined SR of SC, KW, and WW. An increase in wire speed and working load and the use of appropriate mixed grains mesh size and slurry concentration increases the MRR for wire-saw machining.


2013 ◽  
Vol 845 ◽  
pp. 950-954 ◽  
Author(s):  
J. Punturat ◽  
Viboon Tangwarodomnukun ◽  
Chaiya Dumkum

Wire-EDMing process has been more accepted for cutting and slicing silicon wafer as it can provide a cut with less crack and chipping due to low effect of mechanical stresses. In order to provide a deep analysis of the process, the wire-EDMing performances and cut surface characteristics of p-type (100) monocrystalline silicon wafer have been experimentally investigated in this study. The results have shown that wide kerf width, high material removal rate, large electrode wear and rough cut surface can be obtained under the condition of high open voltage and rough cutting mode. Some micrographs of cut surface morphology have been also reported and discussed, where many craters and small holes can be apparently seen on the machined surface.


2012 ◽  
Vol 588-589 ◽  
pp. 1694-1697 ◽  
Author(s):  
Wen Bo Bi ◽  
Pei Qi Ge ◽  
Yu Fei Gao ◽  
Zhen Jie Zhu

This paper introduces the structure of the resin bonded abrasive wire saw manufacture equipment. The equipment can complete the process of the wire saw production, including uncoiling wire, cleaning wire, binder coating, Pre-curving and coiling wire. Wire saw are manufactured successfully by this equipment in the manufacture experiment. The quality of the wire saw was examined by SEM. The average slicing ability of the wire saw is 205 mm2 per meter in the experiment of KDP crystal slicing.


2017 ◽  
Vol 261 ◽  
pp. 215-220
Author(s):  
Martin Novák ◽  
Natasa Naprstkova

Machining of tool steels is often an important used technology. Products made from these materials are often used in mechanical engineering, and quality of workpiece surface roughness after machining respective grinding is one of the important parameters that to us speak about the quality of the machining process. The paper deals with the influence of cutting conditions when grinding bearing steel 100Cr (EN ISO) on machined surface roughness. This steel belongs to a group of bearing steels.


2013 ◽  
Vol 581 ◽  
pp. 247-254 ◽  
Author(s):  
Martin Novák ◽  
Natasa Naprstkova

Machining of tool steels is often an important used technology. Products made from these materials are often used in mechanical engineering, and quality of workpiece surface roughness after machining respective grinding is one of the important parameters that to us speak about the quality of the machining process. The paper deals with the influence of cutting conditions when grinding tool steel X38CrMoV5 (EN ISO) on machined surface roughness.


2010 ◽  
Vol 426-427 ◽  
pp. 1-4 ◽  
Author(s):  
Feng Xu ◽  
Jian Jun Zhu ◽  
Xin Wu ◽  
Xiao Jun Zang ◽  
Dun Wen Zuo

The research was carried out on the parameter optimization of milling titanium alloy in this paper. The cutting models including cutting force, tool life and machined surface roughness are obtained by orthogonal array experiments. The maximum metal removal rate, MRR is selected as objective function. The constraints related to machine tool, workpiece, cutting tool and other machining situations are presented in details. Genetic algorithm is used to search for the optimum milling parameters for the maximum metal removal rate of titanium alloy. The optimization results show the optimization system can improve the productivity of milling Ti6Al4V obviously.


Machines ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 42 ◽  
Author(s):  
Chen Pan ◽  
Qinghua Li ◽  
Kaixing Hu ◽  
Yuxin Jiao ◽  
Yumei Song

This paper applies micro textures to the rake face of PCBN (Polycrystalline Cubic Boron Nitride) tools, including three types of micro textures that are microgroove textures vertical to the cutting edge, microgroove textures parallel to the cutting edge, and microhole textures. In this paper, the effects of different cutting speeds on the surface quality of hardened bearing steel GCr15 by dry turning with non-texture PCBN tools and micro-texture PCBN tools are studied, and the surface roughness values obtained by different micro textures were compared and analyzed. The results showed that, compared to that of non-texture tools, the influence degree of the micro-texture tools on the machined surface roughness was different. The microhole texture and vertical microgroove texture were able to effectively reduce the surface roughness of the workpiece, and microhole texture had the best effective influence on surface roughness, but the parallel microgroove texture increased surface roughness. The influence of cutting speeds on surface roughness was different due to different types of micro textures. The influence of micro textures on surface roughness has huge potential for tool applications.


Author(s):  
Anish Kumar ◽  
Vinod Kumar ◽  
Jatinder Kumar

WEDM process is usually used in manufacturing industries to machine electrically conductive materials with complex shapes and varying degree of hardness. This study mainly involves the development of empirical models for wire wear ratio and material removal rate, in terms of six prominent input parameters using response surface methodology. The objective of developing the model is to establish the quantitative relationship between the output and the input control parameters. The effect of significant terms on machined work surface and wear out wire surface topography was analyzed through energy dispersive X-ray analysis and scanning electron microscope techniques. The wire and machined surface topography was deteriorated and appeared in the form of craters, spherical particles, globules of debris and micro-cracks.


2006 ◽  
Vol 315-316 ◽  
pp. 571-574 ◽  
Author(s):  
J.F. Meng ◽  
Jian Feng Li ◽  
Pei Qi Ge ◽  
R. Zhou

This article investigates the cutting of Al2O3/TiC ceramics using a fixed abrasive diamond endless wire. The effect of wire speed and feed rate on material removal rate, cutting force, surface roughness and wire wear is investigated. The cut surface of Al2O3 /TiC ceramics is studied. This study demonstrates the advantage of fixed abrasive diamond endless wire cutting of Al2O3/TiC ceramics.


2021 ◽  
Author(s):  
Mingyang Wu ◽  
Jianyu Zhang ◽  
Chunjie Ma ◽  
Yali Zhang ◽  
Yaonan Cheng

Abstract Contour bevel gears have the advantages of high coincidence, low noise and large bearing capacity, which are widely used in automobile manufacturing, shipbuilding and construction machinery. However, the quality of the tooth surface has a significant impact on the transmission accuracy of the gear, so it is of great significance to optimize the surface quality of the contour bevel gear. This paper firstly analyzes the formation process of machined surface roughness of contour bevel gears on the basis of generating machining method, and dry milling experiments of contour bevel gears are conducted to analyze the effects of cutting speed and feed rate on the machined surface roughness and surface topography of the workpiece. Then, the surface defects on the machined surface of the workpiece are studied by SEM, and the causes of the surface defects are analyzed by EDS. After that, XRD is used to compare the microscopic grains of the machined surface and the substrate material for diffraction peak analysis, and the effect of cutting parameters on the microhardness of the workpiece machined surface is investigated by work hardening experiment. The research results are of great significant for improving the machining accuracy of contour bevel gears, reducing friction losses and improving transmission efficiency.


Sign in / Sign up

Export Citation Format

Share Document