scholarly journals Experimental and Numerical Analysis of the Mechanical Properties of a Pretreated Shape Memory Alloy Wire in a Self-Centering Steel Brace

Processes ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 80
Author(s):  
Bo Zhang ◽  
Sizhi Zeng ◽  
Fenghua Tang ◽  
Shujun Hu ◽  
Qiang Zhou ◽  
...  

As a stimulus-sensitive material, the difference in composition, fabrication process, and influencing factors will have a great effect on the mechanical properties of a superelastic Ni-Ti shape memory alloy (SMA) wire, so the seismic performance of the self-centering steel brace with SMA wires may not be accurately obtained. In this paper, the cyclic tensile tests of a kind of SMA wire with a 1 mm diameter and special element composition were tested under multi-working conditions, which were pretreated by first tensioning to the 0.06 strain amplitude for 40 cycles, so the mechanical properties of the pretreated SMA wires can be simulated in detail. The accuracy of the numerical results with the improved model of Graesser’s theory was verified by a comparison to the experimental results. The experimental results show that the number of cycles has no significant effect on the mechanical properties of SMA wires after a certain number of cyclic tensile training. With the loading rate increasing, the pinch effect of the hysteresis curves will be enlarged, while the effective elastic modulus and slope of the transformation stresses in the process of loading and unloading are also increased, and the maximum energy dissipation capacity of the SMA wires appears at a loading rate of 0.675 mm/s. Moreover, with the initial strain increasing, the slope of the transformation stresses in the process of loading is increased, while the effective elastic modulus and slope of the transformation stresses in the process of unloading are decreased, and the maximum energy dissipation capacity appears at the initial strain of 0.0075. In addition, a good agreement between the test and numerical results is obtained by comparing with the hysteresis curves and energy dissipation values, so the numerical model is useful to predict the stress–strain relations at different stages. The test and numerical results will also provide a basis for the design of corresponding self-centering steel dampers.

2010 ◽  
Vol 434-435 ◽  
pp. 205-208
Author(s):  
Yi Wang Bao ◽  
De Tian Wan ◽  
Yan Qiu

Mechanical properties of ceramics are important for its engineering application. It would be significant and efficient if some properties could be estimated without tests. Energy dissipation capacity of ceramics is estimated in this work via two common parameters, hardness and elastic modulus, which could be obtained from basic data of commercial ceramics or simple tests. The ratio of hardness to reduced modulus H/Er is found to be related to recovery resistance and energy dissipation capacity of the materials, and the related equations were induced. The reduced modulus can be expressed by conventional elastic modulus E. Thus, the capacity of energy dissipation and elastic recovery can be estimated simply from the H/E ratio. The calculated results indicate that the value of H/E ratio is in reverse proportion to the energy dissipation. Several ceramics with different H/E ratio are analyzed and their energy dissipation capacities are estimated.


Author(s):  
Qiujun Ning ◽  
Lihua Zhu ◽  
Wei Han ◽  
Cheng Zhao

Abstract This study intensively examined the mechanical properties of large-sized superelastic shape memory alloy (SMA) bars, mainly focusing on their self-centering and energy dissipation capabilities. A detailed investigation on the effects of the heat treatment strategy, loading rate, strain amplitude, cyclic loading, prestress, and diameter of the SMA bars on their mechanical performance—residual strain, energy dissipation, equivalent viscous damping ratios, strength, and stiffness—was conducted. Furthermore, the fracture microstructure of monotonic tensile specimens was analyzed via scanning electron microscopy. The results indicated that the optimally heat-treated SMA bars show good superelasticity. The mechanical properties were relatively stable under constant strain loading–unloading training, which should be considered in engineering applications. The test results provided basic experimental data support for the engineering application of large SMA bars.


2019 ◽  
Vol 275 ◽  
pp. 01015 ◽  
Author(s):  
Haoyu Huang ◽  
Wen-Shao Chang ◽  
Ke Chen

This study explores the dynamic behaviours of shape memory alloy (SMA)-dowelled timber connection with densified veneer wood (DVW) reinforcement, so as to provide resilience to the timber structure. The performance of the SMA bar under cyclic bending is firstly studied, and it is found that it has superior self-centring effect and large ductility compared with that of the steel. By testing the SMA-dowelled timber connections and the conventional steel-dowelled timber connections under cyclic loading at various displacement levels, it is shown that SMA can provide better self-centring effect and larger ductility to the connection. The DVW reinforcement can enhance the self-centring and improve the strength. However, the energy dissipation capacity of the SMA-dowelled timber connection is lower than that of the steel-dowelled connection because of the smaller hysteresis area of the SMA. In the further study, the effect of the temperature control on SMA should be investigated to improve the damping capacity of the SMA-dowelled timber connection.


1999 ◽  
Vol 65 (640) ◽  
pp. 2483-2490
Author(s):  
Kazuo AMANO ◽  
Kunio ENOMOTO ◽  
Osamu OYAMADA ◽  
Jun MATSUMOTO ◽  
Yasuhide ASADA

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2961
Author(s):  
Moein Rezapour ◽  
Mehdi Ghassemieh ◽  
Masoud Motavalli ◽  
Moslem Shahverdi

This study presents a new way to improve masonry wall behavior. Masonry structures comprise a significant part of the world’s structures. These structures are very vulnerable to earthquakes, and their performances need to be improved. One way to enhance the performances of such types of structures is the use of post-tensioning reinforcements. In the current study, the effects of shape memory alloy as post-tensioning reinforcements on originally unreinforced masonry walls were investigated using finite element simulations in Abaqus. The developed models were validated based on experimental results in the literature. Iron-based shape memory alloy strips were installed on masonry walls by three different configurations, namely in cross or vertical forms. Seven macroscopic masonry walls were modeled in Abaqus software and were subjected to cyclic loading protocol. Parameters such as stiffness, strength, durability, and energy dissipation of these models were then compared. According to the results, the Fe-based strips increased the strength, stiffness, and energy dissipation capacity. So that in the vertical-strip walls, the stiffness increases by 98.1%, and in the cross-strip model's position, the stiffness increases by 127.9%. In the vertical-strip model, the maximum resistance is equal to 108 kN, while in the end cycle, this number is reduced by almost half and reaches 40 kN, in the cross-strip model, the maximum resistance is equal to 104 kN, and in the final cycle, this number decreases by only 13.5% and reaches 90 kN. The scattering of Fe-based strips plays an important role in energy dissipation. Based on the observed behaviors, the greater the scattering, the higher the energy dissipation. The increase was more visible in the walls with the configuration of the crossed Fe-based strips.


1994 ◽  
Author(s):  
Kuang-Hsi Wu ◽  
Y. Q. Liu ◽  
Michael J. Maich ◽  
Hsien-Kuei Tseng

Sign in / Sign up

Export Citation Format

Share Document