scholarly journals Performance of Single and Two-Stage Cross-Flow Ultrafiltration Membrane in Fractionation of Peptide from Microalgae Protein Hydrolysate (Nannochloropsis gaditana)

Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 610
Author(s):  
Nur Izzati Md Saleh ◽  
Wan Azlina Wan Ab Karim Ghani ◽  
Siti Mazlina Mustapa Kamal ◽  
Razif Harun

Cross-flow ultrafiltration (UF) membrane with two different configurations; single (10 kDa and 5 kDa) and two-stage (10/5 kDa) in fractionating microalgae protein hydrolysate (MPH) were studied to obtain a low molecular weight of peptide. The effect of flow rate, trans-membrane pressure (TMP), and pH in fractionating MPH were evaluated based on permeate flux and peptide transmission. The results showed that, for single UF membrane, optimum operating parameters were at a flow rate of 23 mL/min, TMP of 1.5 bar, and pH of 9, with permeate flux of 43.65 L/m2 h (10 kDa) and 55.42 L/m2 h (5 kDa) and peptide transmission of 58.20% (10 kDa) and 67.34% (5 kDa). Meanwhile, for two-stage (10/5 kDa) UF membrane, the best parameters were observed at a flow rate of 23 mL/min, TMP of 1.5 bar, and pH of 2, with permeate flux of 69.85 L/m2 h and peptide transmission of 79.13%. Fractionation of MPH with two-stage UF membrane was observed to be better at producing a low molecular weight of peptide compared to single UF membrane. In conclusion, it was possible to produce permeate flux with a high amount of low molecular weight of peptide by controlling the operating parameters with the suitable configuration membrane.

2013 ◽  
Vol 65 (4) ◽  
Author(s):  
Muhammadameen Hajihama ◽  
Wirote Youravong

Tuna cooking juice is a co-product of tuna canning industry. It riches in protein, currently used for production of feed meal as well as protein hydrolysate. The finish products are usually in the form of concentrate, produced by evaporation process. However, evaporation is energy consumable process and the salt content level of the concentrate is often over the standard, thus required additional process for lowering salt content e.g. crystallization. The use of membrane technology, therefore, is of interest, since it required less energy and footprint compared with evaporation and is also able to reduce salt content of the concentrate. The aim of this study were to employ and select the membrane filtration process, and optimize the operating condition for protein concentration and desalination of tuna cooking juice. The results indicated that nanofiltration (NF) was more suitable than the ultrafiltration (UF) process, regarding the ability in protein recovery and desalination. The NF performance was evaluated in terms of permeation flux and protein and salt retentions. The protein and salt rejections of NF were 96 % and 5 %, respectively. The permeate flux(J) increased as transmembrane pressure (TMP) or cross flow rate (CFR) increased and the highest flux was obtained at TMP of 10 bar and CFR of 800 L/h. Operating with batch mode, the permeate flux was found to decrease as protein concentration increased, and at volume concentration factor about 4, the protein concentration  about 10% while salt removal was aproximately 70 % of the initial value. This work clearly showed that NF was successfully employed for concentration and desalination of protein derived from tuna cooking juice.


2018 ◽  
Vol 72 (2) ◽  
pp. 59-68
Author(s):  
Tijana Urosevic ◽  
Dragan Povrenovic ◽  
Predrag Vukosavljevic ◽  
Ivan Urosevic

In this paper, the influence of operating parameters (transmembrane pressure, temperature, the flow rate of retentate) on the cross - flow microfiltration of synthetic fruit juice and periodic backwashing with air was examined. In the experiments, the Kerasep W5 ceramic membrane with a separation limit of 0.2 ?m was used. The results of experiments in which different transmembrane pressures were used showed that stationary fluxes, at stationary conditions, after 60 minutes, have similar values. So, it can be concluded that the value of the driving force is irrelevant at steady state conditions. However, until the steady state conditions are established, a positive effect of the increase in the driving force is opposed to the negative effect of the increased polarization resistance, as a result of the driving force increase. Thus, the optimal transmembrane pressure was determined amounting to 2 bars. The optimum temperature of the process of clearing the fruit juices by microfiltration is reported as 55?C. Higher temperatures are not used due to a degrading effect on the chemical composition of the juice and a long microfiltration process. With an increase in the temperature of retentate from 22?C to 55?C, the permeate flux increased up to 60%. Increasing the flow rate of retentate reduces the thickness of the formed layer on the surface of the membrane. Due to limitations of the experimental setup and the large surface area of the membrane, the specific velocity of the retentate was low, so that the effects of cross-flow filtration were absent. The use of cross-flow filtration is one of the main requirements for increasing permeate flux, but in the present case it was in overall insufficient, so we have applied periodic air backwashing for improving fruit juice flux during membrane clarification. With this technique, the deposited layer on the membrane is lifted and the permeate flux is maintained at high levels preventing establishment of the steady state in the low flux zone. The time spent for the periodic backwashing was low as compared to the benefits of the increase in the collected permeate quantity. In all experiments with periodic backwashing with air, the collected permeate quantity is higher for up to 72.5 % as compared to experiments without backwashing. By increasing the backwashing duration, the flux increase is up to 5 %, which can be significant for microfiltration at industrial scale. Therefore, this technique is certainly recommended for microfiltration in the production of fruit juices.


1977 ◽  
Author(s):  
M. J. Seghatchian ◽  
T. Barrowcliffe ◽  
M. Miller-Andersson

Adsorption of plasma by A1(OH)3 is a requirement for the two stage assay of F VIII. It is generally accepted that factors II, VII, IX and X are removed by the procedure, while factors V and VIII are unaffected. Following gel filtration of a F VIII concentrat on Sepharose 4 B F VIII:c was found in the low molecular weight area, as well as in the void volume as expected. This activity was found with both one and two stage techniques. After adsorption of the fractions with Al(OH)3 to eliminate the non F VIII procoagulant activity F VIII:c disappeared from the void volume fractions and was much reduced in the low molecular region. F VIII: R Ag was also removed from these fractions by A1(OH)3 adsorption. After adsorption of fractions in the presence of hemophilia plasma clotting activity remained in both regions suggesting the presence of true F VIII activity. Thus at concentration of 1 IU of F VIII:c per ml, a low purity preparation was unaffected by A1(OH)3 adsorption whereas both antigen and clotting activity of a high purity concentrate were conciderably reduced. Addition of 5 % albumin to the high purity preparation prevented this adsorption. It is concluded that under conditions of high purification F VIII:c can be adsorbed preferentially on A1(OH)3 and this appears to be due to removal of F VIII:R Ag.


Marine Drugs ◽  
2019 ◽  
Vol 17 (7) ◽  
pp. 404 ◽  
Author(s):  
Zhuangwei Zhang ◽  
Xuyang Hu ◽  
Lin Lin ◽  
Guofang Ding ◽  
Fangmiao Yu

In this study, a low molecular-weight (Mw) peptide named NJP (<1 kDa), was purified from a protein hydrolysate of Nibea japonica by ultrafiltration, and its immunomodulatory effect on RAW264.7 cells was evaluated. The lactate dehydrogenase (LDH) and MTT assays were performed to explore the cytotoxicity of NJP. The results showed that NJP promoted cell proliferation and had no significant toxic effects on RAW264.7 cells. Moreover, the cells formed multiple pseudopodia indicating that they were in activated state. Further tests showed that NJP significantly promoted phagocytic capacity, and the secretion of proinflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β). It also increased the synthesis of nitric oxide (NO) by upregulating inducible nitric oxide synthase (iNOS) protein level. Flow cytometry revealed that NJP promoted cell cycle progression and increased the percentage of cells in G0/G1 phase. NJP promoted IκBα degradation, p65 and nuclear factor (NF)-κB activation and translocation by up-regulating IKKα/β protein expression. In conclusion, these results indicated that NJP exerts immunomodulatory effects on RAW264.7 cells through the NF-κB signaling pathway. Therefore, NJP can be incorporated in the production of functional foods or nutraceuticals.


1996 ◽  
Vol 44 (4) ◽  
pp. 967-971 ◽  
Author(s):  
Juan Bautista ◽  
Inmaculada Hernandez-Pinzon ◽  
Manuel Alaiz ◽  
Juan Parrado ◽  
Francisco Millan

2020 ◽  
Vol 26 (2) ◽  
pp. 200105-0
Author(s):  
Kaushal Naresh Gupta ◽  
Rahul Kumar

This paper discusses the isolation of xylene vapor through adsorption using granular activated carbon as an adsorbent. The operating parameters investigated were bed height, inlet xylene concentration and flow rate, their influence on the percentage utilization of the adsorbent bed up to the breakthrough was found out. Mathematical modeling of experimental data was then performed by employing a response surface methodology (RSM) technique to obtain a set of optimum operating conditions to achieve maximum percentage utilization of bed till breakthrough. A fairly high value of R2 (0.993) asserted the proposed polynomial equation’s validity. ANOVA results indicated the model to be highly significant with respect to operating parameters studied. A maximum of 76.1% utilization of adsorbent bed was found out at a bed height of 0.025 m, inlet xylene concentration of 6,200 ppm and a gas flow rate of 25 mL.min-1. Furthermore, the artificial neural network (ANN) was also employed to compute the percentage utilization of the adsorbent bed. A comparison between RSM and ANN divulged the performance of the latter (R2 = 0.99907) to be slightly better. Out of various kinetic models studied, the Yoon-Nelson model established its appropriateness in anticipating the breakthrough curves.


2014 ◽  
Vol 70 (2) ◽  
Author(s):  
D. Novin ◽  
K. F. MD Yunos

The effect of pH, ionic strength and feed concentration on performance of ultrafiltration (UF) to fractionate Catfish protein hydrolysate (CFPH) through 5kDa regenerated cellulose (RC) membrane was studied. The highest and lowest permeate flux belonged respectively to pH 9 and isoelectric point (IEP) with flux reduction of 5.75 L/m2.h at pH 9 and 10.98 L/m2.h at pH isoelectric through operating time. Further, by adding the salt, the highest permeate flux and transmission obtained at highest ionic strength of 0.15 M NaCl with 52.96% of transmission (in average). Then, the transmission reached to 54.18% by increasing feed concentration up to 1.5 mg/ml. 


2012 ◽  
pp. 225-235
Author(s):  
Zita Seres ◽  
Ljubica Dokic ◽  
Biljana Pajin ◽  
Dragana Soronja-Simovic ◽  
Drago Subaric ◽  
...  

The subject of the work is the possibility of applying microfiltration through a ceramic tubular membrane with 100 nm pore sizes to the steepwater obtained in the production process of corn starch. The dry matter content should be reduced in the steepwater permeate. Thus the consumption of the process water would be reduced, the nutrients from the steepwater could be exploited as feed and the wastewater problem would consequently be solved. The objective of the work was to examine the influence of the operating parameters on the permeate flux during steepwater microfiltration. The parameters that vary in the course of microfiltration, were the transmembrane pressur and flow rate, while the permeate flux and dry matter content of the permeate and retentate were the dependent parameters, constantly monitored during the process. Another objective of this study was to investigate the influence of static turbulence promoter on the permeate flux during steepwater microfiltration. Static mixers enhance permeate flux, thus the microfiltration can be performed longer. As a result of the statistical analysis, the optimal conditions for steepwater microfiltration were determined. The maximum value of the permeate flux without mixer (25 lm-2h-1) was achieved at a pressure of 2 bars and a flow rate around 100 lh-1. With the use of static mixer the flux is 2,5 times higher compared to the one obtained without the mixer. The dry matter content of the permeat after 2.5 hours of mucrofiltration was lowered by 40%.


Sign in / Sign up

Export Citation Format

Share Document