scholarly journals BACTERIAL DESULFURIZATION OF DIBENZOTHIOPHENE BY PSEUDOMONAS SP. STRAIN KWN5 IMMOBILIZED IN ALGINATE BEADS

2021 ◽  
Vol 83 (2) ◽  
pp. 107-115
Author(s):  
Ida Bagus Wayan Gunam ◽  
Ardiansyah Sitepu ◽  
Nyoman Semadi Antara ◽  
I Gusti Ayu Lani Triani ◽  
I Wayan Arnata ◽  
...  

Biodelfurization of petroleum has emerged as a potential alternative to the hydrodesulfurization and oxidative desulfurization processes. However, the main obstacle in its commercial application is the efficiency and practicality of using bacterial cells. Pseudomonas sp. strain KWN5 was tested for the ability to use dibenzothiophene (DBT) in n-tetradecane as the sole sulfur source with two phase oil-water system. The biodesulfurization ability of strain KWN5 was evaluated by immobilized cells with dibenzothiophene as substrates. The cells immobilized by entrapping them with sodium alginate (SA) had high DBT biodesulfurization activity and could degrade 100 mg DBT/L in n-tetradecane of 46.76–100%, depended on concentrations of sodium alginate and cells within 24 h at 37oC with shaking at 160 rpm. The combination of SA concentration of 3% (w/v) with bacterial cells OD660 40 (25.52 mg DCW/mL) has an optimal biodesulfurization activity on 100 mg DBT/L in n-tetradecane, which is equal to 71.85% biodesulfurization. The immobilized cells of Pseudomonas sp. strain KWN5 in alginate beads were more efficient for the degradation of DBT and can be reused for five cycles (220 h) without any loss in their activity. The results of this study clearly show the role of the effects of cell immobilization in increasing the process of biodesulfurization.

Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 724
Author(s):  
Miguel L. Sousa-Dias ◽  
Vanessa Branco Paula ◽  
Luís G. Dias ◽  
Letícia M. Estevinho

This work studied the production of mead using second category honey and the immobilized cells of Saccharomyces cerevisiae in sodium alginate, with concentrations of 2% and 4%, and their reuse in five successive fermentations. The immobilized cells with 4% alginate beads were mechanically more stable and able to allow a greater number of reuses, making the process more economical. The fermentation’s consumption of sugars with free cells (control) and immobilized cells showed a similar profile, being completed close to 72 h, while the first use of immobilized cells finished at 96 h. The immobilized cells did not significantly influence some oenological parameters, such as the yield of the consumed sugars/ethanol, the alcohol content, the pH and the total acidity. There was a slight increase in the volatile acidity and a decrease in the production of SO2. The alginate concentrations did not significantly influence either the parameters used to monitor the fermentation process or the characteristics of the mead. Mead fermentations with immobilized cells showed the release of cells into the wort due to the disintegration of the beads, indicating that the matrix used for the yeast’s immobilization should be optimized, considering the mead production medium.


2015 ◽  
pp. 207-218
Author(s):  
Jovana Djuran ◽  
Zorana Roncevic ◽  
Bojana Bajic ◽  
Sinisa Dodic ◽  
Jovana Grahovac ◽  
...  

Ethanol is an important industrial chemical with emerging potential as a biofuel to replace fossil fuels. In order to enhance the efficiency and yield of alcoholic fermentation, combined techniques such as cells immobilization and media optimization have been used. The aim of this study was the optimization of sodium alginate concentration and glucose and yeast extract content in the media for ethanol production with immobilized cells of Saccharomyces cerevisiae. Optimization of these parameters was attempted by using a Box-Behnken design using the response surface methodology. The obtained model predicts that the maximum ethanol content of 7.21% (v/v) is produced when the optimal values of sodium alginate concentration and initial content of glucose and yeast extract in the medium are 22.84 g/L, 196.42 g/L and 3.77 g/L, respectively. To minimize the number of yeast cells "eluted" from the alginate beads and residual glucose content in fermented media, additional two sets of optimization were made. The obtained results can be used for further techno-economic analyses of the process to select the optimum conditions of the fermentation process for industrial application.


BioResources ◽  
2019 ◽  
Vol 14 (4) ◽  
pp. 9429-9443
Author(s):  
Quin Emparan ◽  
Razif Harun ◽  
Yew Sing Jye

The use of freely suspended cells of microalgae culture to treat wastewater is of current global interest because of their effective photosynthetic uptake of pollutants, carbon dioxide sequestration, and biomass production for desirable high value-products. Biomass immobilization is a promising option to overcome the harvesting problem that is encountered when using free-cells upon completion of the wastewater treatment process. In this study, Nannochloropsis sp. cells were immobilized in sodium alginate beads to eliminate the harvesting limitation. The microalgal beads were further cultivated in treated palm oil mill effluent (TPOME) for removal of chemical oxygen demand (COD). The effect of POME concentration on COD removal and microalgal cells growth was investigated, respectively. It was found that the maximum biomass concentration of 1.23 g/L and COD removal of 55% from 10% POME were achieved after 9 days. An increment of POME concentration did not cause any improvement to the treatment efficiency due to the inhibitory effect of high initial COD of POME on the biomass concentration and was further responsible for low COD removal. The immobilized cells showed a systematic growth, demonstrating that the beads are biocompatible as immobilization carrier. In conclusion, the immobilized microalgal cells could be a viable alternative technology system for POME treatment as well as biomass production.


2018 ◽  
Vol 6 (2) ◽  
pp. 169
Author(s):  
I Made Yoga Saputra ◽  
Nyoman Semadi Antara ◽  
Ida Bagus Wayan Gunam

The purpose of this study was to determine the concentration and size of Na-alginate beads that have the highest degradation activity of dibenzothiophene. Biodesulfurization (BDS) of dibenzothiophene (DBT) was performed using 3 Na-alginate concentrations and 3 different beads sizes in the oil model system. Biodesulfurization was performed with incubation for 24 hours. The previous research showed that sodium alginate (Na-alginate) was an appropriate immobilizing agent compared to other immobilized materials. Na-alginate 4% show the activity of the degradation of the most good that is 66.33% (bead size 2 mm), 62.99% (bead size 3 mm), 59.93% (bead size 4 mm), for concentration of 3% Na-alginate showed 65.58% (bead size 2 mm), 61.68% (bead size 3 mm) and 60.43% (bead size 4 mm), while concentration 5% showed the most low that is 64.86% (bead size 2 mm), 61.01% (bead size 3 mm), and 58.89% (bead size 4 mm). The stability test showed Na-alginate 4% have the stability and durability of the bead stronger, the test showed Na-alginate can be used up to five repeat and still have degradation activity. Key words: Biodesulfurization, Dibenzothiophene, Immobilized cells, Na-alginate.


Fermentation ◽  
2020 ◽  
Vol 6 (4) ◽  
pp. 103
Author(s):  
Ucrecia F. Hutchinson ◽  
Seteno K. O. Ntwampe ◽  
Boredi S. Chidi ◽  
Maxwell Mewa-Ngongang ◽  
Heinrich W. du Plessis ◽  
...  

Cell immobilization is a process augmentation technique aimed at improving microbial survival and activity under stressful conditions. It offers the opportunity to reuse the immobilized cells for several fermentation cycles. The present study investigated the use of recycled cells entrapped in calcium-alginate beads and cells adsorbed on corncobs (CC) and oakwood chips (OWC) in subsequent fermentation cycles for balsamic-styled vinegar (BSV) production. Sugars, pH, alcohol and total acidity were monitored during fermentation. Microbial activity and product formation declined when immobilized cells were reused for the second cycle for CC and OWC fermentations. Recycled cells entrapped in Ca-alginate beads completed the second cycle of fermentations, albeit at reduced acetification rates compared to the first cycle. Scanning electron microscope (SEM) imaging results further showed a substantial the structural integrity loss for Ca-alginate beads after the first cycle, and with minor changes in the structural integrity of CC. The OWC displayed a similar morphological structure before and after the first cycle. The sensory results showed that BSV produced using immobilized cells with Ca-alginate beads and CC was palatable, while those produced using OWC had negative attributes. Ca-alginate beads offered better protection for the fermentation consortium for culture reusability in BSV fermentations.


2018 ◽  
Vol 25 (2) ◽  
pp. 243-253
Author(s):  
Georgi Chernev ◽  
Nelly Christova ◽  
Lyudmila Kabaivanova ◽  
Lilyana Nacheva

Abstract In this study sol-gel hybrid materials in the system SiO2-chitosan (CS) - polyethylene glycol (PEG), as novel structures with potential application in bioremediation were investigated. The organic components - CS and PEG were used as structural modifiers for functionality improvement. The catabolic activity to n-hexadecane of Pseudomonas aeruginosa BN10 free and immobilized cells was estimated. The cell immobilization technique was employed to evaluate its efficiency on biodegradation and protective effect from high levels of hydrocarbons. The characteristics of obtained hybrid materials were investigated via X-ray Diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and Atomic-force microscopy (AFM) analyses. The obtained results revealed that the organic part in the synthesized hybrids is important for microstructure and defined properties creation. The rate of n-hexadecane mineralization by the bacterial strain was influenced by variation in cell densities applied in the immobilization procedures. Semi-continuous processes with multiple xenobiotic supplies were carried out. The synthesized by the sol-gel method hybrid matrices proved to be suitable carriers for realizing an effective biodegradation process of n-hexadecane by Pseudomonas aeruginosa BN10. Biodegradation of 50 kg/m3 of n-hexadecane was realized by free cells. Significantly greater quantity (150 kg/m3) was mineralized for 15 active cycles by entrapped bacterial cells. Biodegradation process with gradual increase of xenobiotic concentration reaching 30 kg/m3 for 120 h was also accomplished.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Abeer Abdulkhalek Ghoniem ◽  
Noura El-Ahmady El-Naggar ◽  
WesamEldin I. A. Saber ◽  
Mohammed S. El-Hersh ◽  
Ayman Y. El-khateeb

Abstract Heavy metals are environmental pollutants affect the integrity and distribution of living organisms in the ecosystem and also humans across the food chain. The study targeted the removal of copper (Cu2+) from aqueous solutions, depending on the biosorption process. The bacterial candidate was identified using 16S rRNA sequencing and phylogenetic analysis, in addition to morphological and cultural properties as Azotobacter nigricans NEWG-1. The Box-Behnken design was applied to optimize copper removal by Azotobacter nigricans NEWG-1 and to study possible interactive effects between incubation periods, pH and initial CuSO4 concentration. The data obtained showed that the maximum copper removal percentage of 80.56% was reached at run no. 12, under the conditions of 200 mg/L CuSO4, 4 days’ incubation period, pH, 8.5. Whereas, the lowest Cu2+ removal (12.12%) was obtained at run no.1. Cells of Azotobacter nigricans NEWG-1 before and after copper biosorption were analyzed using FTIR, EDS and SEM. FTIR analysis indicates that several functional groups have participated in the biosorption of metal ions including hydroxyl, methylene, carbonyl, carboxylate groups. Moreover, the immobilized bacterial cells in sodium alginate-beads removed 82.35 ± 2.81% of copper from the aqueous solution, containing an initial concentration of 200 mg/L after 6 h. Azotobacter nigricans NEWG-1 proved to be an efficient biosorbent in the elimination of copper ions from environmental effluents, with advantages of feasibility, reliability and eco-friendly.


2020 ◽  
Vol 147 ◽  
pp. 03032
Author(s):  
Anida Dieni ◽  
Ustadi

This study was aimed to immobilize the chitinolytic bacteria Streptomyces sp. PB 2 using sodium alginate as immobilization agent. Streptomyces sp. PB 2 was reported have a good chitinolytic activity and immobilization is known to increase the stability of bacteria during repeated used. Sodium alginate has been used on several methods of immobilization and sodium alginate are reported as a good agent. Cell immobilization was done by growing the cell on nutrient broth (NB), mixed with 1% sodium alginate to form the beads, then the mixture were put to a syringe and droped into CaCl2 solution. The beads were washed with 0.85% NaCl solution and filtered. To test the bacterial activity, beads were applied into chitin liquid medium and the chitinolytic activity was observed every 24 hours for 5 days. To test its stability, after the 5th day, the beads was filtered and put in to chitin liquid medium and tested the chitinolytic activity. This experiment was repeated twice. The highest chitinolytic activity of Streptomyces sp. PB2 was observed on the 4th day with the value of 0.00014 U/ml and the concentration of NAG of 5.42087 µg/ml with the treatment of immobilized NB medium without the addition of chitin.


2014 ◽  
Vol 1 (2) ◽  
pp. 71-82
Author(s):  
Lusiana Kresnawati Hartono ◽  
Tatik Khusniati ◽  
I Made Artika ◽  
Sulistiani Sulistiani ◽  
Abdul Choliq

Hydrolysis of lactose in milk by β-galactosidase from immobilized bacterial cells has the potential to alleviate the problem of lactose intolerance. The present study was aimed to immobilize cells of L. plantarum strain B134 and evaluate their efficiency in hydrolyzing lactose in ultra high temperature (UHT) milk. Immobilized cells were generated by mixing cell suspensions with solutions of sodium alginate and calcium chloride. The β-galactosidase activity of the immobilized cells was tested by determining their ability in hydrolyzing lactose in UHT milk (whole milk and skimmed milk). Results showed that cells of L. plantarum strain B134 were entrapped optimally using a combination of 1 % sodium alginate, 100 mM calcium chloride and 12 % w/v cell suspension. The highest β-galactosidase activity was achieved at pH 6.5 and a temperature of 45 ºC for 5 minutes incubation time. The immobilization efficiency achieved was 28.95 %. The immobilized cells could reduce lactose by up to 85.45 % in UHT whole milk and 91.26 % in UHT skimmed milk. The times required for that reduction of lactose in UHT whole milk and UHT skimmed milk were 12 hours and 9 hours respectively. The immobilized cells could be re-used up to 4 times for efficient lactose hydrolysis for both types of milk. Therefore, immobilized cells of L. plantarum B134 have the potential to be used for lactose hydrolysis in UHT milk.


Sign in / Sign up

Export Citation Format

Share Document