HIGH YIELD OF ETHANOL FROM WASTE APPLE JUICE by IMMOBILIZED CELLS OF Saccharomyces cerevisiae S-3S ON SUGAR CANE BAGASSE IN FED BATCH SYSTEM

2017 ◽  
Vol 16 (9) ◽  
pp. 1867-1871
Author(s):  
Arifa Tahir ◽  
Sidra Sarwar
2018 ◽  
Vol 6 (10) ◽  
pp. 12787-12796 ◽  
Author(s):  
Marie Rose Mukasekuru ◽  
Jinguang Hu ◽  
Xiaoqin Zhao ◽  
Fubao Fuelbiol Sun ◽  
Kaneza Pascal ◽  
...  

Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 724
Author(s):  
Miguel L. Sousa-Dias ◽  
Vanessa Branco Paula ◽  
Luís G. Dias ◽  
Letícia M. Estevinho

This work studied the production of mead using second category honey and the immobilized cells of Saccharomyces cerevisiae in sodium alginate, with concentrations of 2% and 4%, and their reuse in five successive fermentations. The immobilized cells with 4% alginate beads were mechanically more stable and able to allow a greater number of reuses, making the process more economical. The fermentation’s consumption of sugars with free cells (control) and immobilized cells showed a similar profile, being completed close to 72 h, while the first use of immobilized cells finished at 96 h. The immobilized cells did not significantly influence some oenological parameters, such as the yield of the consumed sugars/ethanol, the alcohol content, the pH and the total acidity. There was a slight increase in the volatile acidity and a decrease in the production of SO2. The alginate concentrations did not significantly influence either the parameters used to monitor the fermentation process or the characteristics of the mead. Mead fermentations with immobilized cells showed the release of cells into the wort due to the disintegration of the beads, indicating that the matrix used for the yeast’s immobilization should be optimized, considering the mead production medium.


2021 ◽  
Vol 11 (5) ◽  
pp. 2133
Author(s):  
Laura Landa-Ruiz ◽  
Miguel Angel Baltazar-Zamora ◽  
Juan Bosch ◽  
Jacob Ress ◽  
Griselda Santiago-Hurtado ◽  
...  

This research evaluates the behavior corrosion of galvanized steel (GS) and AISI 1018 carbon steel (CS) embedded in conventional concrete (CC) made with 100% CPC 30R and two binary sustainable concretes (BSC1 and BSC2) made with sugar cane bagasse ash (SCBA) and silica fume (SF), respectively, after 300 days of exposure to 3.5 wt.% MgSO4 solution as aggressive medium. Electrochemical techniques were applied to monitor corrosion potential (Ecorr) according to ASTM C-876-15 and linear polarization resistance (LPR) according to ASTM G59 for determining corrosion current density (icorr). Ecorr and icorr results indicate after more than 300 days of exposure to the sulfate environment (3.5 wt.% MgSO4 solution), that the CS specimens embedded in BSC1 and BSC2 presented greater protection against corrosion in 3.5 wt.% MgSO4 than the specimens embedded in CC. It was also shown that this protection against sulfates is significantly increased when using GS reinforcements. The results indicate a higher resistance to corrosion by exposure to 3.5 wt.% magnesium sulfate two times greater for BSC1 and BSC2 specimens reinforced with GS than the specimens embedding CS. In summary, the combination of binary sustainable concrete with galvanized steel improves durability and lifetime in service, in addition to reducing the environmental impact of the civil engineering structures.


Sign in / Sign up

Export Citation Format

Share Document