scholarly journals Large Eddy Simulation of Leakage Flow in a Stepped Labyrinth Seal

Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2179
Author(s):  
Ji-Hwan Kim ◽  
Joon Ahn

Large eddy simulation (LES) and Reynolds averaged Navier-Stokes simulation (RANS) of leakage flow in straight-through and stepped labyrinth seals were performed in order to compare their performances in sealing the secondary flow passage of the gas turbine based on the respective discharge coefficients. The results indicate a 17.8% higher leakage prevention performance for the stepped seal relative to that of the straight seal. Further, while the LES predicts an ~7% reduction in the discharge coefficient due to shaft rotation, this effect is underestimated by the RANS. Moreover, the LES correctly predicts a laminarized flow pattern in the clearance, whereas the RANS overestimates the turbulence kinetic energy. In addition, a turbulence kinetic energy spectrum analysis was performed based on the vorticity at selected points in order to identify the flow structure that has a dominant influence on the oscillation of the discharge coefficient. This analysis also enabled identification of the changes in the flow structure due to shaft rotation.

2015 ◽  
Vol 27 (7) ◽  
pp. 075106 ◽  
Author(s):  
Alexej Pogorelov ◽  
Matthias Meinke ◽  
Wolfgang Schröder

2021 ◽  
Vol 932 ◽  
Author(s):  
Changping Yu ◽  
Zelong Yuan ◽  
Han Qi ◽  
Jianchun Wang ◽  
Xinliang Li ◽  
...  

Kinetic energy flux (KEF) is an important physical quantity that characterizes cascades of kinetic energy in turbulent flows. In large-eddy simulation (LES), it is crucial for the subgrid-scale (SGS) model to accurately predict the KEF in turbulence. In this paper, we propose a new eddy-viscosity SGS model constrained by the properly modelled KEF for LES of compressible wall-bounded turbulence. The new methodology has the advantages of both accurate prediction of the KEF and strong numerical stability in LES. We can obtain an approximate KEF by the tensor-diffusivity model, which has a high correlation with the real value. Then, using the artificial neural network method, the local ratios between the real KEF and the approximate KEF are accurately modelled. Consequently, the SGS model can be improved by the product of that ratio and the approximate KEF. In LES of compressible turbulent channel flow, the new model can accurately predict mean velocity profile, turbulence intensities, Reynolds stress, temperature–velocity correlation, etc. Additionally, for the case of a compressible flat-plate boundary layer, the new model can accurately predict some key quantities, including the onset of transitions and transition peaks, the skin-friction coefficient, the mean velocity in the turbulence region, etc., and it can also predict the energy backscatters in turbulence. Furthermore, the proposed model also shows more advantages for coarser grids.


Author(s):  
Yansen Wang ◽  
Michael J. Benson

Abstract In this article we describe the details of an ABLE-LBM (Atmospheric Boundary Layer Environment-Lattice Boltzmann Model) validation study for urban building array turbulent flow simulations. The ABLE-LBM large-eddy simulation results were compared with a set of 3D magnetic resonance image (MRI) velocimetry data. The ABLE-LBM simulations used the same building layout and Reynolds numbers operated in the laboratory water channel. The building set-up was an evenly spaced orthogonal array of cubic buildings (height = H) with a central tall building (height = 3H) in the second row. Two building orientations, angled with 0°and 45° wind directions, were simulated with ABLE-LBM. The model produced horizontal and vertical fields of time-averaged velocity fields and compared well with the experimental results. The model also produced urban canyon flows and vortices at front and lee sides and over building tops that were similar in strength and location to the laboratory studies. The turbulent kinetic energy associated with these two wind directions were also presented in this simulation study. It is shown that the building array arrangement, especially the tall building, has a great effect on turbulent wind fields. There is a Karman vortex street on the lee side of the tall building. High turbulent intensity areas are associated with the vortex shedding motions at building edges. In addition, the wind direction is a very important factor for turbulent wind and kinetic energy distribution. This validation study indicated that ABLE-LBM is a viable simulation model for turbulent atmospheric boundary layer flows in the urban building array. The computational speed of ABLE-LBM using the GPU has shown that real-time LES simulation is realizable for a computational domain with several millions grid points.


Minerals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 597 ◽  
Author(s):  
Lu Yang ◽  
Zhenna Zhu ◽  
Xin Qi ◽  
Xiaokang Yan ◽  
Haijun Zhang

Pulp preconditioning using a stirred tank as a pretreatment process is vital to the flotation system, which can be used to improve the flotation efficiency of mineral particles. The kinetic energy that is dissipated in the stirred tank could strengthen the interaction process between mineral particles and flotation reagents to improve the flotation efficiency in the presence of the preconditioning. In this paper, the effect of the conditioning speed on the coal fly ash flotation was investigated using numerical simulations and conditioning-flotation tests. The large eddy simulation coupled with the Smagorinsky-Lilly subgrid model was employed to simulate the turbulence flow field in the stirred tank, which was equipped with a six blade Rushton turbine. The impeller rotation was modelled using the sliding mesh. The simulation results showed that the large eddy simulation (LES) well matched the previous experimental data. The turbulence characteristics, such as the mean velocity, turbulent kinetic energy, power consumption and instantaneous structures of trailing vortices were analysed in detail. The turbulent length scale (η) decreased as the rotation speed increased, and the minimum value of η was almost unchanged when the rotation speed was more than 1200 rpm. The conditioning-flotation tests of coal fly ash were conducted using different conditioning speeds. The results showed that the removal of unburned carbon was greatly improved due to the strengthened turbulence in the stirred tank, and the optimal results were obtained with an LOI of 3.32%, a yield of 78.69% and an RUC of 80.89% when the conditioning speed was 1200 rpm.


2013 ◽  
Vol 444-445 ◽  
pp. 281-285 ◽  
Author(s):  
Tao Guo ◽  
Jun Zhou ◽  
Xiao Nan Liu

The vibration intensity is strong in Francis turbine occurred under the small opening conditions, such as Lijia Gorges and Three Gorges project. In paper we use large eddy simulation (LES) method base on Vreman SubGrid-Scale model to study the generation and evolution process of turbulence flow, capturing the details of the flow structures and the dissipation of the turbulent kinetic energy. The SIMPIEC algorithm is applied to solve the coupled equation of velocity and pressure. The result shows that the small guide vane opening conditions deviate the optimal conditions most. So some unstable flow characters been induced. Such as the turbulent kinetic energy of fluid in guide vanes zone, the blade passage and the draft tube are very strong. The unstable flow phenomenon including the swirl, flow separation, interruption and vortex strip. It can be deduced that the vibration of unit is induced by these flow characteristic.


Sign in / Sign up

Export Citation Format

Share Document