scholarly journals Study of Periodic Signals from Blazars

Proceedings ◽  
2019 ◽  
Vol 17 (1) ◽  
pp. 15
Author(s):  
Gopal Bhatta

The search for periodic signals from blazars has become an actively pursued field of research in recent years. This is because periodic signals bring us information about the processes occurring near the innermost regions of blazars, which are mostly inaccessible to our direct view. Such signals provide insights into some of the extreme conditions that take place in the vicinity of supermassive black holes that lead to the launch of the relativistic jets. In addition, studies of characteristic timescales in blazar light curves shed light on some of the challenging issues in blazar physics that include disk-jet connection, strong gravity near fast-rotating supermassive black holes and release of gravitational waves from binary supermassive black hole systems. However, a number of issues associated with the search for quasi-periodic oscillations (QPOs) in blazars e.g., red-noise dominance, modest significance of the detection, periodic modulation lasting for only a couple of cycles and their transient nature, make it difficult to estimate the true significance of the detection. Consequently, it also becomes difficult to make meaningful inferences about the nature of the on-going processes. In this proceedings, results of study focused on searching for QPOs in a number of blazar multi-frequency light curves are summarized. The time series analyses of long term observations of the blazars revealed the presence of year-timescale QPOs in the sources including OJ 287 (optical), Mrk 501 (gamma-ray), J1043+2408 (radio) and PKS 0219-164 (radio). A likely explanations, we discuss a number of scenarios including binary supermassive black hole systems, lense-thirring precession, and jet precession.

2019 ◽  
Vol 14 (S351) ◽  
pp. 80-83 ◽  
Author(s):  
Melvyn B. Davies ◽  
Abbas Askar ◽  
Ross P. Church

AbstractSupermassive black holes are found in most galactic nuclei. A large fraction of these nuclei also contain a nuclear stellar cluster surrounding the black hole. Here we consider the idea that the nuclear stellar cluster formed first and that the supermassive black hole grew later. In particular we consider the merger of three stellar clusters to form a nuclear stellar cluster, where some of these clusters contain a single intermediate-mass black hole (IMBH). In the cases where multiple clusters contain IMBHs, we discuss whether the black holes are likely to merge and whether such mergers are likely to result in the ejection of the merged black hole from the nuclear stellar cluster. In some cases, no supermassive black hole will form as any merger product is not retained. This is a natural pathway to explain those galactic nuclei that contain a nuclear stellar cluster but apparently lack a supermassive black hole; M33 being a nearby example. Alternatively, if an IMBH merger product is retained within the nuclear stellar cluster, it may subsequently grow, e.g. via the tidal disruption of stars, to form a supermassive black hole.


2020 ◽  
Vol 35 (02n03) ◽  
pp. 2040054
Author(s):  
M. Yu. Piotrovich ◽  
V. L. Afanasiev ◽  
S. D. Buliga ◽  
T. M. Natsvlishvili

Based on spectropolarimetry for a number of active galactic nuclei in Seyfert 1 type galaxies observed with the 6-m BTA telescope, we have estimated the spins of the supermassive black holes at the centers of these galaxies. We have determined the spins based on the standard Shakura-Sunyaev accretion disk model. More than 70% of the investigated active galactic nuclei are shown to have Kerr supermassive black holes with a dimensionless spin greater than 0.9.


2006 ◽  
Vol 2 (S238) ◽  
pp. 345-346
Author(s):  
Carlos H. Coimbra-Araújo ◽  
Amâncio C. S. Friaça

AbstractWe show, performing a viable cosmological window, that only the magneto hydrodynamic (MHD) disk model is capable to explain how an intermediate mass black hole (IMBH) (with masses ∼ 103M⊙) grows unto a supermassive black hole (SMBH) (with masses ∼ 107M⊙). We still calculate the supermassive stars sequence of stability. Those stars, with synthetized helium or oxygen cores, collapse to form IMBHs. In our calculation we show that the primordial stars must have rapid rotation if they are in the stable part of the sequence.


2003 ◽  
Vol 208 ◽  
pp. 455-456
Author(s):  
Jeremy Tinker ◽  
Barbara Ryden

We present results of numerical simulations of mergers of spiral galaxies using GADGET (Springel, Yoshida, & White 2001). In three of these simulations one of the progenitor galaxies contained a central supermassive black hole (BH), as well as one simulation which did not contain a BH. The merger remnants were evolved to an age of ∼ 13 Gyr to examine the evolution of the shape of each merger remnant. The results of these simulations were compared to observations of elliptical galaxies, which show that older galaxies appear rounder than younger ones (Ryden, Forbes, & Terlevich 2001).We found that the simulations in which the BH mass was fixed throughout the evolution influence the shape of their host galaxies on timescales less than 3 Gyr. These simulations show little trend of shape with age beyond this time. In the simulations in which the BH mass increased linearly over the duration of the simulation, there is a significant evolution of the shape of the remnant throughout its lifetime, comparable to the observational trend.


2019 ◽  
Vol 15 (S359) ◽  
pp. 99-107
Author(s):  
C. Jones ◽  
W. Forman

AbstractSupermassive black holes (SMBHs) play[-105pt]Kindly check and confirm the Article Title. fundamental roles in the evolution of galaxies, groups, and clusters. The fossil record of supermassive black hole outbursts is seen through the cavities and shocks that are imprinted on these gas-rich systems. For M87, the central galaxy in the Virgo cluster, deep Chandra observations illustrate the physics of AGN feedback in hot, gas-rich atmospheres and allow measurements of the age, duration, and power of the outburst from the supermassive black hole in M87 that produced the observed cavities and shocks in the hot X-ray atmosphere.


2012 ◽  
pp. 1-16 ◽  
Author(s):  
P. Jovanovic

Here we present a short overview of the most important results of our investigations of the following galactic and extragalactic gravitational phenomena: supermassive black holes in centers of galaxies and quasars, supermassive black hole binaries, gravitational lenses and dark matter. For the purpose of these investigations, we developed a model of a relativistic accretion disk around a supermassive black hole, based on the ray-tracing method in the Kerr metric, a model of a bright spot in an accretion disk and three different models of gravitational microlenses. All these models enabled us to study physics, spacetime geometry and effects of strong gravity in the vicinity of supermassive black holes, variability of some active galaxies and quasars, different effects in the lensed quasars with multiple images, as well as the dark matter fraction in the Universe. We also found an observational evidence for the first spectroscopically resolved sub-parsec orbit of a supermassive black hole binary system in the core of active galaxy NGC 4151. Besides, we studied applications of one potential alternative to dark matter in the form of a modified theory of gravity on Galactic scales, to explain the recently observed orbital precession of some S-stars, which are orbiting around a massive black hole at the Galactic center.


2019 ◽  
pp. 151-158
Author(s):  
Nicholas Mee

The Event Horizon Telescope (EHT) is aiming to image the event horizon of the supermassive black hole at the centre of our galaxy. Andrea Ghez has mapped out the orbits of stars around this supermassive black hole and deduced it has a mass of four million Suns. An even bigger supermassive black hole of six billion solar masses lies at the centre of the M87 Galaxy. Shep Doeleman has marshalled several of the world’s radio telescopes to form the EHT with the aim of imaging the event horizons of these black holes.


2014 ◽  
Vol 10 (S312) ◽  
pp. 92-100
Author(s):  
Eugene Vasiliev

AbstractI review the evolution of binary supermassive black holes and focus on the stellar-dynamical mechanisms that may help to overcome the final-parsec problem – the possible stalling of the binary at a separation much larger than is required for an efficient gravitational wave emission. RecentN-body simulations have suggested that a departure from spherical symmetry in the nucleus of the galaxy may keep the rate of interaction of stars with the binary at a high enough level so that the binary continues to shrink rather rapidly. However, a major problem of all these simulations is that they do not probe the regime where collisionless effects are dominant – in other words, the number of particles in the simulation is still not sufficient to reach the asymptotic behavior of the system. I present a novel Monte Carlo method for simulating both collisional and collisionless evolution of non-spherical stellar systems, and apply it for the problem of binary supermassive black hole evolution. I show that in triaxial galaxies the final-parsec problem is largely non-existent, while in the axisymmetric case it seems to still exist in the limit of purely collisionless regime relevant for real galaxies, but disappears in theN-body simulations where the feasible values ofNare still too low to get rid of collisional effects.


2021 ◽  
Vol 503 (3) ◽  
pp. 3629-3642
Author(s):  
Colin DeGraf ◽  
Debora Sijacki ◽  
Tiziana Di Matteo ◽  
Kelly Holley-Bockelmann ◽  
Greg Snyder ◽  
...  

ABSTRACT With projects such as Laser Interferometer Space Antenna (LISA) and Pulsar Timing Arrays (PTAs) expected to detect gravitational waves from supermassive black hole mergers in the near future, it is key that we understand what we expect those detections to be, and maximize what we can learn from them. To address this, we study the mergers of supermassive black holes in the Illustris simulation, the overall rate of mergers, and the correlation between merging black holes and their host galaxies. We find these mergers occur in typical galaxies along the MBH−M* relation, and that between LISA and PTAs we expect to probe the full range of galaxy masses. As galaxy mergers can trigger star formation, we find that galaxies hosting low-mass black hole mergers tend to show a slight increase in star formation rates compared to a mass-matched sample. However, high-mass merger hosts have typical star formation rates, due to a combination of low gas fractions and powerful active galactic nucleus feedback. Although minor black hole mergers do not correlate with disturbed morphologies, major mergers (especially at high-masses) tend to show morphological evidence of recent galaxy mergers which survive for ∼500 Myr. This is on the same scale as the infall/hardening time of merging black holes, suggesting that electromagnetic follow-ups to gravitational wave signals may not be able to observe this correlation. We further find that incorporating a realistic time-scale delay for the black hole mergers could shift the merger distribution towards higher masses, decreasing the rate of LISA detections while increasing the rate of PTA detections.


Universe ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 279
Author(s):  
Zdeněk Stuchlík ◽  
Jaroslav Vrba

We study epicyclic oscillatory motion along circular geodesics of the Simpson–Visser meta-geometry describing in a unique way regular black-bounce black holes and reflection-symmetric wormholes by using a length parameter l. We give the frequencies of the orbital and epicyclic motion in a Keplerian disc with inner edge at the innermost circular geodesic located above the black hole outer horizon or on the our side of the wormhole. We use these frequencies in the epicyclic resonance version of the so-called geodesic models of high-frequency quasi-periodic oscillations (HF QPOs) observed in microquasars and around supermassive black holes in active galactic nuclei to test the ability of this meta-geometry to improve the fitting of HF QPOs observational data from the surrounding of supermassive black holes. We demonstrate that this is really possible for wormholes with sufficiently high length parameter l.


Sign in / Sign up

Export Citation Format

Share Document