scholarly journals Using Soil Stratigraphy and Tephrochronology to Understand the Origin, Age, and Classification of a Unique Late Quaternary Tephra-Derived Ultisol in Aotearoa New Zealand

Quaternary ◽  
2019 ◽  
Vol 2 (1) ◽  
pp. 9 ◽  
Author(s):  
David J. Lowe

In this article, I show how an Ultisol, representative of a globally-important group of soils with clay-rich subsoils, low base saturation, and low fertility, in the central Waikato region in northern North Island, can be evaluated using soil stratigraphy and tephrochronology to answer challenging questions about its genesis, age and classification. The Kainui soil, a Typic Kandiudult (Soil Taxonomy) and Buried-granular Yellow Ultic Soil (New Zealand Soil Classification), occurs on low rolling hills of Mid-Quaternary age mainly in the Hamilton lowlands in, and north and northeast of, Hamilton city. It is a composite, multi-layered tephra-derived soil consisting of two distinct parts, upper and lower. The upper part is a coverbed typically c. 0.4–0.7 m in thickness (c. 0.6 m on average) comprising numerous late Quaternary rhyolitic and andesitic tephras that have been accumulating incrementally since c. 50 ka (the age of Rotoehu Ash at the coverbed’s base) whilst simultaneously being pedogenically altered (i.e., forming soil horizons) via developmental upbuilding pedogenesis during Marine Oxygen Isotope Stages (MOIS) 3-1. Any original depositional (fall) bedding has been almost entirely masked by pedogenic alteration. Sediments in lakes aged c. 20 ka adjacent to the low hills have preserved around 40 separate, thin, macroscopic tephra-fall beds mainly rhyolitic in composition, and equivalent subaerial deposits together form the upper c. 30 cm of the coverbed. Okareka (c. 21.8 ka), Okaia (c. 28.6 ka), Tāhuna (c. 39.3 ka) and (especially) Rotoehu tephras make up the bulk of the lower c. 30 cm of the coverbed. Tephra admixing has occurred throughout the coverbed because of soil upbuilding processes. Moderately well drained, this upper profile is dominated by halloysite (not allophane) in the clay fraction because of limited desilication. In contrast, Otorohanga soils, on rolling hills to the south of Hamilton, are formed in equivalent but thicker (>c. 0.8 m) late Quaternary tephras ≤c. 50 ka that are somewhat more andesitic although predominantly rhyolitic overall. These deeper soils are well drained with strong desilication and thus are allophanic, generating Typic Hapludands. Ubiquitous redox features, together with short-lived contemporary reduction observed in the lower coverbed of a Kainui soil profile, indicate that the Kainui soil in general is likely to be saturated by perching for several days, or near saturation for several months, each year. The perching occurs because the coverbed overlies a slowly-permeable, buried, clay-rich paleosol on upper Hamilton Ash beds, >c. 50 ka in age, which makes up the lower part of the two-storeyed Kainui soil. The coverbed-paleosol boundary is a lithologic discontinuity (unconformity). Irregular in shape, it represents a tree-overturn paleosurface that may be c. 74 ka in age (MOIS 5/4 boundary). The buried paleosol is markedly altered and halloysitic with relict clay skins (forming paleo-argillic and/or paleo-kandic horizons) and redoximorphic features. It is inferred to have formed via developmental upbuilding pedogenesis during the Last Interglacial (MOIS 5e). The entire Hamilton Ash sequence, c. 3 m in thickness and overlain unconformably by Rotoehu Ash and underlain by c. 330-ka Rangitawa Tephra at the base, represents a thick composite (accretionary) set of clayey, welded paleosols developed by upbuilding pedogenesis from MOIS 10 to 5.

Soil Research ◽  
1992 ◽  
Vol 30 (6) ◽  
pp. 843 ◽  
Author(s):  
AE Hewitt

A brief review of the history of soil classification in New Zealand is made in order to place the most recent work in its historical context. The first comprehensive system was inspired by the Russian concepts of zonality, and was published as the New Zealand Genetic Soil Classification by Taylor in 1948. It may be regarded as a grand soil-landscape model that related soil classes to environmental factors. Although successful in stimulating the reconnaissance survey of New Zealand soils, it failed to support the requirements of more intensive land use. Soil Taxonomy was tested as an alternative modem system for a period of 5 years but was found to make inadequate provision for important classes of New Zealand soils. The New Zealand Soil Classification was developed using many of the features of Soil Taxonomy while preserving successful parts of the New Zealand Genetic Soil Classification. Historical lessons include the increasing importance of electronic databases and regional correlation, the importance of nomenclature, the necessity of a national system and the divorce of soil classification from soil-landscape modelling.


Soil Research ◽  
1977 ◽  
Vol 15 (3) ◽  
pp. 177 ◽  
Author(s):  
RB Stewart ◽  
VE Neall ◽  
JA Pollok ◽  
JK Syers

The Egmont loam of Taranaki, New Zealand, is regarded as a classic andosol developed in andesitic tephra (a yellow-brown loam in the N.Z. genetic soil classification or an entic dystrandept in the US. Soil Taxonomy). Variations in grain size distribution and mineralogy within a representative profile show it to consist of two distinct units, an upper unit of andesitic tephra and a lower unit, containing up to 30% quartz, which is interpreted as a tephric loess. Correlation of peaks in andesitic glass distribution within the profile with eruptions from Mt Egmont suggest an accumulation period of circa 10000 years for the tephra unit, while the presence, in places conducive to its preservation, of the Aokautere Ash, a rhyolitic ash of widespread distribution in the Central North Island, dates (NZ1056A) the base of the profile at less than 19 850 � 310 years B.P. Peaks in distribution of the minor rhyolitic glass component in the tephra unit are correlated with three major post-glacial rhyolitic eruptions from the Central North Island; the Taupo eruption of 1840 � 50 years B.P. (NZ1548A), the Waimihia eruption of 3440 � 70 years B.P. (NZZA), and the Rotoma eruption of 7330 � 235 years B.P. (NZ1199A). Variations in the rate of quartz accumulation in the silt fraction of the Egmont profile are correlated with climatic changes, a higher rate of quartz accumulation occurring during the colder climate of the last stadial, in contrast with a lower rate of quartz accumulation occurring during the warmer climate of post-glacial time.


2021 ◽  
Vol 13 (7) ◽  
pp. 3399-3437
Author(s):  
Deirdre D. Ryan ◽  
Alastair J. H. Clement ◽  
Nathan R. Jankowski ◽  
Paolo Stocchi

Abstract. This paper presents the current state of knowledge of the Aotearoa New Zealand last interglacial (marine isotope stage 5, MIS 5, sensu lato) sea-level record compiled within the framework of the World Atlas of Last Interglacial Shorelines (WALIS) database. A total of 77 relative sea-level (RSL) indicators (direct, marine-limiting, and terrestrial-limiting points), commonly in association with marine terraces, were identified from over 120 studies reviewed. Extensive coastal deformation around New Zealand has prompted research focused on active tectonics, the scale of which overprints the sea-level record in most regions. The ranges of last interglacial palaeo-shoreline elevations are significant on both the North Island (276.8 ± 10.0 to −94.2 ± 10.6 ma.m.s.l., above mean sea level) and South Island (165.8 ± 2.0 to −70.0 ± 10.3 ma.m.s.l.) and have been used to estimate rates of vertical land movement; however, in many instances there is a lack of adequate description and age constraint for high-quality RSL indicators. Identified RSL indicators are correlated with MIS 5, MIS 5e, MIS 5c, and MIS 5a and indicate the potential for the New Zealand sea-level record to inform sea-level fluctuation and climatic change within MIS 5. The Northland Region of the North Island and southeastern South Island, historically considered stable, have the potential to provide a regional sea-level curve, minimally impacted by glacio- and hydro-isostatic adjustment (GIA) and reflecting near-eustatic fluctuations in a remote location of the South Pacific, across broad degrees of latitude; however, additional records from these regions are needed. Future work requires modern analogue information, heights above a defined sea-level datum, better stratigraphic descriptions, and use of improved geochronological methods. The database presented in this study is available open access at this link: https://doi.org/10.5281/zenodo.4590188 (Ryan et al., 2020a).


2021 ◽  
Author(s):  
◽  
Vasiliki Mouslopoulou

<p>The North Island of New Zealand sits astride the Hikurangi margin along which the oceanic Pacific Plate is being obliquely subducted beneath the continental Australian Plate. The North Island Fault System1 (NIFS), in the North Island of New Zealand, is the principal active strike-slip fault system in the overriding Australian Plate accommodating up to 30% of the margin parallel plate motion. This study focuses on the northern termination of the NIFS, near its intersection with the active Taupo Rift, and comprises three complementary components of research: 1) the investigation of the late Quaternary (c. 30 kyr) geometries and kinematics of the northern NIFS as derived from displaced geomorphic landforms and outcrop geology, 2) examination of the spatial and temporal distribution of  paleoearthquakes in the NIFS over the last 18 kyr, as derived by fault-trenching and displaced landforms, and consideration of how these distributions may have produced the documented late Quaternary (c. 30 kyr) kinematics of the northern NIFS, and 3) Investigation of the temporal stability of the late Quaternary (c. 30 kyr) geometries and kinematics throughout the Quaternary (1-2 Ma), derived from gravity, seismic-reflection, drillhole, topographic and outcrop data. The late Quaternary (c. 30 kyr) kinematics of the northern NIFS transition northward along strike, from strike-slip to oblique-normal faulting, adjacent to the rift. With increasing proximity to the Taupo Rift the slip vector pitch on each of the faults in the NIFS steepens gradually by up to 60 degrees, while the mean fault-dip decreases from 90 degrees to 60 degrees W. Adjustments in the kinematics of the NIFS reflect the gradual accommodation of the NW-SE extension that is distributed outside the main physiographic boundary of the Taupo Rift. Sub-parallelism of slip vectors in the NIFS with the line of intersection between the two synchronous fault systems reduces potential space problems and facilitates the development of a kinematically coherent fault intersection, which allows the strike-slip component of slip to be transferred into the rift. Transfer of displacement from the NIFS into the rift accounts for a significant amount of the northeastward increase of extension along the rift. Steepening of the pitch of slip vectors towards the northern termination of the NIFS allows the kinematics and geometry of faulting to change efficiently, from strike-lip to normal faulting, providing an alternative mechanism to vertical axis rotations for terminating large strike-lip faults. Analyses of kinematic constraints from worldwide examples of synchronous strike-lip and normal faults that intersect to form two or three plate configurations, within either oceanic or continental crust, suggest that displacement is often transferred between the two fault systems in a similar manner to that documented at the NIFS - Taupo Rift fault intersection. The late Quaternary (c. 30 kyr) change in the kinematics of the NIFS along strike, from dominantly strike-slip to oblique-normal faulting, arises due to a combination of rupture arrest during individual earthquakes and variations in the orientation of the coseismic slip vectors. At least 80 % of all surface rupturing earthquakes appear to have terminated within the kinematic transition zone from strike-slip to oblique-normal slip. Fault segmentation reduces the magnitudes of large surface rupturing earthquakes in the northern NIFS from 7.4-7.6 to c. 7.0. Interdependence of throw rates between the NIFS and Taupo Rift suggests that the intersection of the two fault systems has functioned coherently for much of the last 0.6-1.5 Myr. Oblique-normal slip faults in the NIFS and the Edgecumbe Fault in the rift accommodated higher throw rates since 300 kyr than during the last 0.6-1.5 Myr. Acceleration of these throw rates may have occurred in response to eastward migration of rifting, increasing both the rates of faulting and the pitch of slip vectors. The late Quaternary (e.g. 30 kyr) kinematics, and perhaps also the stability, of the intersection zone has been geologically short lived and applied for the last c. 300 kyr.</p>


2021 ◽  
Author(s):  
Andrew M Lorrey ◽  
Paul W Williams ◽  
John-Mark Woolley ◽  
Nicolas C Fauchereau ◽  
Adam Hartland ◽  
...  

We re-evaluated speleothem isotope series from Aotearoa New Zealand that were recently contributed to the Speleothem Isotopes Synthesis and AnaLysis (SISAL) database. COnstructing Proxy Records from Age Models (COPRA) software was used to produce Bayesian age models for those speleothems. The new age modelling helped us examine Late Quaternary temporal coverage for the national speleothem network, and also supported our exploration of three different isotope master record generation techniques using Holocene δ18O data from Waitomo. We then applied the output from one of the isotope master record techniques to test an application case of how climate transfer functions can be developed using climate model simulated temperatures. Our results suggest Holocene δ18O trends at Waitomo capture air temperature variations weighted toward the primary season of soil moisture (and epikarst) recharge during winter. This interpretation is consistent with the latest monitoring data from the Waitomo region. Holocene δ18O millennial-scale trends and centennial-scale variability at Waitomo likely reflect atmospheric circulation patterns that concomitantly vary with surface water temperature and the isotopic composition of the Tasman Sea. A climate model simulation context for the Holocene millennial-scale trends in the Waitomo δ18O isotope master record suggest that site is sensitive to changes in the subtropical front (STF) and the Tasman Front. Our comparison of isotope master record techniques using Waitomo δ18O data indicate that caution is needed prior to merging δ18O data series from different caves in order to avoid time series artefacts. Future work should incorporate more high-resolution cave monitoring and climate calibration studies, and develop new speleothem data from northern and eastern regions of the country.


Clay Minerals ◽  
2008 ◽  
Vol 43 (1) ◽  
pp. 137-154 ◽  
Author(s):  
C. E. G. R. Schaefer ◽  
J. D. Fabris ◽  
J. C. Ker

AbstractThis review focuses on the clay mineralogy of the most important Brazilian soils: the Latosols, which cover >60% of the country by area, and occur in association with other soils. They are typically deep, highly-weathered soils, dominated by low-activity 1:1 clay minerals and Fe and Al oxyhydroxides, with varying proportions of these minerals, depending on parent material and weathering intensity. They are usually of low fertility, although eutric types also occur. Latosols are generally correlated with Oxisols (American soil taxonomy) and Ferralsols (WRB system). Clay mineralogy is typically monotonous: kaolinite, gibbsite, hematite, goethite, maghemite and Ti minerals (mainly ilmenite and anatase) are the prominent mineral phases in the clay fraction. Some Latosols developing on basalt from southern Brazil contain significant amounts of hydroxyl-interlayed vermiculite. Among the pedogenic oxides the most frequent are goethite (α-FeOOH), indicated by yellowish colours (2.5Y–10YR; in the absence of hematite), and hematite (α-Fe2O3), which imbues reddish colors (2.5YR–5R), even when present in very minor amounts. Maghemite (γ-Fe2O3) is less frequent; it imparts a reddish-brown colour (5YR–2.5YR) and magnetic properties. Both goethite and hematite show Al-substitution, with a greater relative proportion in soil goethites. Hence, in similar drainage conditions, goethite is less prone to dissolution than hematite. Most reddish Latosols also contain maghemite, due to partial or complete oxidation of magnetite, which generally occurs naturally or is fire-induced. Magnetite and/or maghemite are associated with trace elements which are important in plant nutrition, such as Cu, Zn and Co. The contents of gibbsite in Latosols are extremely variable, from a complete absence in brown Latosols, to 54% in red Latosols from mafic rocks. Relatively large amounts of gibbsite are found in the clay fraction of these soils and this mineral is important in P sorption in deeply weathered Latosols in association with goethite and hematite. Even though most Latosols are dystrophic, some are eutrophic, revealing an unusually large base saturation in areas under ustic regimes where the parent material is particularly rich in bases, such as basalts. This eutrophic nature is attributed to the protecting role of micro-aggregates in ferric red Latosols, which retard baseleaching from the inner aggregate. At the other extreme, some Brazilian Latosols are acric and positively-charged in sub-surface horizons, as revealed by the relationship pH KCl > pH H2O. These acric Latosols are the result of long-term weathering and intensive leaching, during which pH tends to increase to values close to the zero point charge of Fe and Al oxides (between 6 and 7), greatly increasing P adsorption, which is mainly attributed to gibbsite, goethite and hematite. Soil kaolinites in Brazilian Latosols are mostly of low crystallinity, with Hughes and Brown indexes of between 6 and 15. In this review we have discussed the role of these clay-fraction minerals in soil genesis and fertility, highlighting the marked role of inheritance from deeply-weathered parent material. Latosols typically retain large amounts of Fe oxides, some of which are magnetic, with spontaneous magnetization >1 J T–1 kg–1. In this regard, reddish Latosols developed from mafic rocks are the most representative magnetic soils, and cover as much as 3.9% of Brazil. An overview of magnetic soils on four representative examples of mafic lithologies is presented, together with some aspects of their Fe-oxide mineralogy and related field and laboratory technqiues.


Quaternary ◽  
2020 ◽  
Vol 3 (3) ◽  
pp. 24
Author(s):  
Andrew M. Lorrey ◽  
Paul W. Williams ◽  
John-Mark Woolley ◽  
Nicolas C. Fauchereau ◽  
Adam Hartland ◽  
...  

We re-evaluated speleothem isotope series from Aotearoa New Zealand that were recently contributed to the Speleothem Isotopes Synthesis and AnaLysis (SISAL) database. COnstructing Proxy Records from Age Models (COPRA) software was used to produce Bayesian age models for those speleothems. The new age modelling helped us examine Late Quaternary temporal coverage for the national speleothem network, and also supported our exploration of three different isotope master record generation techniques using Holocene δ18O data from Waitomo. We then applied the output from one of the isotope master record techniques to test an application case of how climate transfer functions can be developed using climate model simulated temperatures. Our results suggest Holocene δ18O trends at Waitomo capture air temperature variations weighted toward the primary season of soil moisture (and epikarst) recharge during winter. This interpretation is consistent with the latest monitoring data from the Waitomo region. Holocene δ18O millennial-scale trends and centennial-scale variability at Waitomo likely reflect atmospheric circulation patterns that concomitantly vary with surface water temperature and the isotopic composition of the Tasman Sea. A climate model simulation context for the Holocene millennial-scale trends in the Waitomo δ18O isotope master record suggest that site is sensitive to changes in the subtropical front (STF) and the Tasman Front. Our comparison of isotope master record techniques using Waitomo δ18O data indicate that caution is needed prior to merging δ18O data series from different caves in order to avoid time series artefacts. Future work should incorporate more high-resolution cave monitoring and climate calibration studies, and develop new speleothem data from northern and eastern regions of the country.


2021 ◽  
Author(s):  
◽  
Vasiliki Mouslopoulou

<p>The North Island of New Zealand sits astride the Hikurangi margin along which the oceanic Pacific Plate is being obliquely subducted beneath the continental Australian Plate. The North Island Fault System1 (NIFS), in the North Island of New Zealand, is the principal active strike-slip fault system in the overriding Australian Plate accommodating up to 30% of the margin parallel plate motion. This study focuses on the northern termination of the NIFS, near its intersection with the active Taupo Rift, and comprises three complementary components of research: 1) the investigation of the late Quaternary (c. 30 kyr) geometries and kinematics of the northern NIFS as derived from displaced geomorphic landforms and outcrop geology, 2) examination of the spatial and temporal distribution of  paleoearthquakes in the NIFS over the last 18 kyr, as derived by fault-trenching and displaced landforms, and consideration of how these distributions may have produced the documented late Quaternary (c. 30 kyr) kinematics of the northern NIFS, and 3) Investigation of the temporal stability of the late Quaternary (c. 30 kyr) geometries and kinematics throughout the Quaternary (1-2 Ma), derived from gravity, seismic-reflection, drillhole, topographic and outcrop data. The late Quaternary (c. 30 kyr) kinematics of the northern NIFS transition northward along strike, from strike-slip to oblique-normal faulting, adjacent to the rift. With increasing proximity to the Taupo Rift the slip vector pitch on each of the faults in the NIFS steepens gradually by up to 60 degrees, while the mean fault-dip decreases from 90 degrees to 60 degrees W. Adjustments in the kinematics of the NIFS reflect the gradual accommodation of the NW-SE extension that is distributed outside the main physiographic boundary of the Taupo Rift. Sub-parallelism of slip vectors in the NIFS with the line of intersection between the two synchronous fault systems reduces potential space problems and facilitates the development of a kinematically coherent fault intersection, which allows the strike-slip component of slip to be transferred into the rift. Transfer of displacement from the NIFS into the rift accounts for a significant amount of the northeastward increase of extension along the rift. Steepening of the pitch of slip vectors towards the northern termination of the NIFS allows the kinematics and geometry of faulting to change efficiently, from strike-lip to normal faulting, providing an alternative mechanism to vertical axis rotations for terminating large strike-lip faults. Analyses of kinematic constraints from worldwide examples of synchronous strike-lip and normal faults that intersect to form two or three plate configurations, within either oceanic or continental crust, suggest that displacement is often transferred between the two fault systems in a similar manner to that documented at the NIFS - Taupo Rift fault intersection. The late Quaternary (c. 30 kyr) change in the kinematics of the NIFS along strike, from dominantly strike-slip to oblique-normal faulting, arises due to a combination of rupture arrest during individual earthquakes and variations in the orientation of the coseismic slip vectors. At least 80 % of all surface rupturing earthquakes appear to have terminated within the kinematic transition zone from strike-slip to oblique-normal slip. Fault segmentation reduces the magnitudes of large surface rupturing earthquakes in the northern NIFS from 7.4-7.6 to c. 7.0. Interdependence of throw rates between the NIFS and Taupo Rift suggests that the intersection of the two fault systems has functioned coherently for much of the last 0.6-1.5 Myr. Oblique-normal slip faults in the NIFS and the Edgecumbe Fault in the rift accommodated higher throw rates since 300 kyr than during the last 0.6-1.5 Myr. Acceleration of these throw rates may have occurred in response to eastward migration of rifting, increasing both the rates of faulting and the pitch of slip vectors. The late Quaternary (e.g. 30 kyr) kinematics, and perhaps also the stability, of the intersection zone has been geologically short lived and applied for the last c. 300 kyr.</p>


2021 ◽  
Author(s):  
Andrew M Lorrey ◽  
Paul W Williams ◽  
John-Mark Woolley ◽  
Nicolas C Fauchereau ◽  
Adam Hartland ◽  
...  

We re-evaluated speleothem isotope series from Aotearoa New Zealand that were recently contributed to the Speleothem Isotopes Synthesis and AnaLysis (SISAL) database. COnstructing Proxy Records from Age Models (COPRA) software was used to produce Bayesian age models for those speleothems. The new age modelling helped us examine Late Quaternary temporal coverage for the national speleothem network, and also supported our exploration of three different isotope master record generation techniques using Holocene δ18O data from Waitomo. We then applied the output from one of the isotope master record techniques to test an application case of how climate transfer functions can be developed using climate model simulated temperatures. Our results suggest Holocene δ18O trends at Waitomo capture air temperature variations weighted toward the primary season of soil moisture (and epikarst) recharge during winter. This interpretation is consistent with the latest monitoring data from the Waitomo region. Holocene δ18O millennial-scale trends and centennial-scale variability at Waitomo likely reflect atmospheric circulation patterns that concomitantly vary with surface water temperature and the isotopic composition of the Tasman Sea. A climate model simulation context for the Holocene millennial-scale trends in the Waitomo δ18O isotope master record suggest that site is sensitive to changes in the subtropical front (STF) and the Tasman Front. Our comparison of isotope master record techniques using Waitomo δ18O data indicate that caution is needed prior to merging δ18O data series from different caves in order to avoid time series artefacts. Future work should incorporate more high-resolution cave monitoring and climate calibration studies, and develop new speleothem data from northern and eastern regions of the country.


Sign in / Sign up

Export Citation Format

Share Document