scholarly journals Oxidative Desulfurization of Tire Pyrolysis Oil over Molybdenum Heteropolyacid Loaded Mesoporous Catalysts

Reactions ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 457-472
Author(s):  
Jasmine Kaur ◽  
Sundaramurthy Vedachalam ◽  
Philip Boahene ◽  
Ajay K. Dalai

Pyrolysis oil derived from waste tires consists of sulfur content in the range of 7000 to 9000 ppm. For use in diesel engines, its sulfur content must be lowered to 10 to 15 ppm. Though conventional hydrodesulfurization is suitable for the removal of sulfur from tire pyrolysis oil, its high cost provides an avenue for alternative desulfurization technologies to be explored. In this study, oxidative desulfurization (ODS), a low-cost technology, was explored for the desulfurization of tire pyrolysis oil. Two categories of titanium-incorporated mesoporous supports with 20 wt% loaded heteropoly molybdic acid catalyst (HPMo/Ti-Al2O3 and HPMo/Ti-TUD-1) were developed and tested for ODS of tire pyrolysis oil at mild process conditions. Catalysts were characterized by X-ray diffraction, BET-N2 physisorption, and X-ray photoelectron spectroscopy (XPS). The incorporation of Ti into Al2O3 and TUD-1 frameworks was confirmed by XPS. The surface acidity of catalysts was studied by the temperature-programmed desorption of NH3 and pyridine FTIR analyses. HPMo/Ti-Al2O3 and HPMo/Ti-TUD-1 catalysts contained both Lewis and Brønsted acid sites. The presence of titanium in catalysts was found to promote the ODS activity of phosphomolybdic acid. The Ti-TUD-1-supported catalysts performed better than the Ti-Al2O3-supported catalysts for the ODS of tire pyrolysis oil. Hydrogen peroxide and cumene peroxide were found to be better oxidants than tert-butyl hydroperoxide for oxidizing sulfur compounds of tire pyrolysis oil. Process parameter optimization by the design of experiments was conducted with an optimal catalyst along with the catalyst regeneration study. An ANOVA statistical analysis demonstrated that the oxidant/sulfur and catalyst/oil ratios were more significant than the reaction temperature for the ODS of tire pyrolysis oil. It followed the pseudo-first-order kinetics over HPMo/Ti-TUD-1.

2020 ◽  
Vol 44 (39) ◽  
pp. 16810-16820
Author(s):  
Rosanna Viscardi ◽  
Vincenzo Barbarossa ◽  
Daniele Mirabile Gattia ◽  
Raimondo Maggi ◽  
Giovanni Maestri ◽  
...  

Superiorty of the supported sulfonic acid catalyst in terms of the water resistance and efficiency of the acid sites compared to the commercial reference.


Catalysts ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 541 ◽  
Author(s):  
Haiping Xiao ◽  
Chaozong Dou ◽  
Hao Shi ◽  
Jinlin Ge ◽  
Li Cai

A series of poisoned catalysts with various forms and contents of sodium salts (Na2SO4 and Na2S2O7) were prepared using the wet impregnation method. The influence of sodium salts poisoned catalysts on SO2 oxidation and NO reduction was investigated. The chemical and physical features of the catalysts were characterized via NH3-temperature programmed desorption (NH3-TPD), H2-temperature programmed reduction (H2-TPR), X-ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET), X-ray diffraction (XRD), and Fourier Transform Infrared Spectroscopy (FT-IR). The results showed that sodium salts poisoned catalysts led to a decrease in the denitration efficiency. The 3.6% Na2SO4 poisoned catalyst was the most severely deactivated with denitration efficiency of only 50.97% at 350 °C. The introduction of SO42− and S2O72− created new Brønsted acid sites, which facilitated the adsorption of NH3 and NO reduction. The sodium salts poisoned catalysts significantly increased the conversion of SO2–SO3. 3.6%Na2S2O7 poisoned catalyst had the strongest effect on SO2 oxidation and the catalyst achieved a maximum SO2–SO3-conversion of 1.44% at 410 °C. Characterization results showed sodium salts poisoned catalysts consumed the active ingredient and lowered the V4+/V5+ ratio, which suppressed catalytic performance. However, they increased the content of chemically adsorbed oxygen and the strength of V5+=O bonds, which promoted SO2 oxidation.


Catalysts ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 90 ◽  
Author(s):  
Wangsheng Chen ◽  
Fali Hu ◽  
Linbo Qin ◽  
Jun Han ◽  
Bo Zhao ◽  
...  

A sulfated sintered ore catalyst (SSOC) was prepared to improve the denitration performance of the sintered ore catalyst (SOC). The catalysts were characterized by X-ray Fluorescence Spectrometry (XRF), Brunauer–Emmett–Teller (BET) analyzer, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and diffuse reflectance infrared spectroscopy (DRIFTS) to understand the NH3-selective catalytic reduction (SCR) reaction mechanism. Moreover, the denitration performance and stability of SSOC were also investigated. The experimental results indicated that there were more Brønsted acid sites at the surface of SSOC after the treatment by sulfuric acid, which lead to the enhancement of the adsorption capacity of NH3 and NO. Meanwhile, Lewis acid sites were also observed at the SSOC surface. The reaction between −NH2, NH 4 + and NO (E-R mechanism) and the reaction of the coordinated ammonia with the adsorbed NO2 (L-H mechanism) were attributed to NOx reduction. The maximum denitration efficiency over the SSOC, which was about 92%, occurred at 300 °C, with a 1.0 NH3/NO ratio, and 5000 h−1 gas hourly space velocity (GHSV).


Catalysts ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 947 ◽  
Author(s):  
Edson Edain González ◽  
Ricardo Rangel ◽  
Javier Lara ◽  
Pascual Bartolo-Pérez ◽  
Juan José Alvarado-Gil ◽  
...  

Nowadays, one of the most important challenges that humanity faces is to find alternative ways of reducing pollutant emissions. CeO2/Bi2Mo1−xRuxO6 and Au/Bi2Mo1−xRuxO6 catalysts were prepared to efficiently transform carbon monoxide (CO) to carbon dioxide (CO2) at low temperatures. The systems were prepared in a two-step process. First, Bi2Mo1−xRuxO6 supports were synthesized through the hydrothermal procedure under microwave heating. Then, CeO2 was deposited on Bi2Mo1−xRuxO6 using the wet impregnation method, while the incipient impregnation method was selected to deposit gold nanoparticles. The CeO2/Bi2Mo1−xRuxO6 and Au/Bi2Mo1−xRuxO6 catalysts were characterized using SEM microscopy and XRD. Furthermore, energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy were used. Tests were carried out for the supported catalysts in CO oxidation, and high conversion values, nearing 100%, was observed in a temperature range of 100 to 250 °C. The results showed that the best system was the Au/Bi2Mo0.95Ru0.05O6 catalyst, with CO oxidation starting at 50 °C and reaching 100% conversion at 186 °C.


1997 ◽  
Vol 497 ◽  
Author(s):  
L. L. L. Prado ◽  
P. A. P. Nascente ◽  
S. C. de Castro ◽  
Y. Gushikem

ABSTRACTThe synthesis of aluminum oxide grafted on silica gel surface was carried out by the reaction of a suitable aluminum precursor with the surface hydrolysis of the oxide support. The chemical and physical properties of the attached oxide, SiO2/ Al2O3, can be quite different than those found for bulk Al2O3. The advantage of this preparation method, compared to the conventional ones (impregnation, precipitation and calcination), is that the oxide is highly dispersed on the surface (monolayer or submonolayer). We characterized the surface oxides treated at the temperature range of 423 to 1573 K employing X-ray photoelectron spectroscopy (XPS), solid state nuclear magnetic resonance spectroscopy (NMR), and diffuse reflectance spectroscopy (DRS). XPS was used to identify the oxidation states and atomic ratios. Al27 NMR detected two species for samples heated up to 1023 K, and another one above this temperature. DRS, using pyridine as a molecular probe, showed that both Lewis and Brönsted acid sites are stable up to 1023 K. We concluded that the aluminum oxide is highly dispersed on the silica gel surface and it remains stable up to 1023 K.


Catalysts ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 623
Author(s):  
Yuwei Feng ◽  
Aiwu Zeng

The catalytic performance of Mn3O4 supported on carbon nanotubes (CNTs) in the liquid-phase oxidation of toluene to benzyl alcohol and benzaldehyde was studied. The supported catalysts were characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), N2 adsorption–desorption isotherms and ICP-MS. The results demonstrate that Mn3O4 nanoparticles loaded on CNTs performed better compared with pristine Mn3O4 or CNTs. The main reason for the increased catalytic activity is the dispersion and loading of Mn3O4 in CNTs. By optimizing the reaction temperature, reaction time, catalyst quality, oxygen flow rate and initiator dosage, the optimum reaction conditions were obtained. Using tert-butyl hydroperoxide (TBHP) as the initiator and oxygen as the oxidant, the toluene conversion rate was as high as 24.63%, and benzyl alcohol and benzaldehyde selectivity was 90.49%. The good stability of the catalyst was confirmed by repeating the experiment for four cycles and observing no significant changes in its performance.


Sign in / Sign up

Export Citation Format

Share Document