scholarly journals Sensitivity Based Selection of an Optimal Cable-Driven Parallel Robot Design for Rehabilitation Purposes

Robotics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 7
Author(s):  
Ferdaws Ennaiem ◽  
Abdelbadiâ Chaker ◽  
Juan Sebastián Sandoval Arévalo ◽  
Med Amine Laribi ◽  
Sami Bennour ◽  
...  

This paper deals with the design of an optimal cable-driven parallel robot (CDPR) for upper limb rehabilitation. The robot’s prescribed workspace is identified with the help of an occupational therapist based on three selected daily life activities, which are tracked using a Qualisys motion capture system. A preliminary architecture of the robot is proposed based on the analysis of the tracked trajectories of all the activities. A multi-objective optimization process using the genetic algorithm method is then performed, where the cable tensions and the robot size are selected as the objective functions to be minimized. The cables tensions are bounded between two limits, where the lower limit ensures a positive tension in the cables at all times and the upper limit represents the maximum torque of the motor. A sensitivity analysis is then performed using the Monte Carlo method to yield the optimal design selected out of the non-dominated solutions, forming the obtained Pareto front. The robot with the highest robustness toward the disturbances is identified, and its dexterity and elastic stiffness are calculated to investigate its performance.

Author(s):  
Bogdan Gherman ◽  
Iosif Birlescu ◽  
Paul Tucan ◽  
Calin Vaida ◽  
Adrian Pisla ◽  
...  

As the life span increases and the availability of physicians becomes more and more scarce, robotic rehabilitation for post-stroke patients becomes more and more demanding, especially due to the repeatability character of the rehabilitation exercises. Both lower and upper limb rehabilitation using robotic systems have proved to be very successful in different stages of the rehabilitation process, but only a few address the immediate (critical) post-stroke phase, especially when the patient is hemiplegic and is unable to stand. The paper presents the kinematic modelling, singularity analysis and gait simulation for a new 4-DOF parallel robot named RECOVER used for lower limb rehabilitation for bedridden patients. The robotic system has been designed for the mobilization of the lower limb, namely the following motions: the hip and knee flexion and the plantar adduction/abduction and flexion/dorsiflexion. The kinematics has been studied and the singularity configurations have been determined to achieve a failsafe rehabilitation robot. Numerical simulations prove that the system can be used for gait training exercises in safe conditions.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Qiang Cao ◽  
Jianfeng Li ◽  
Mingjie Dong

Purpose The purpose of this paper is to evaluate three categories of four-degrees of freedom (4-DOFs) upper limb rehabilitation exoskeleton mechanisms from the perspective of relative movement offsets between the upper limb and the exoskeleton, so as to provide reference for the selection of exoskeleton mechanism configurations. Design/methodology/approach According to the configuration synthesis and optimum principles of 4-DOFs upper limb exoskeleton mechanisms, three categories of exoskeletons compatible with upper limb were proposed. From the perspective of human exoskeleton closed chain, through reasonable decomposition and kinematic characteristics analysis of passive connective joints, the kinematic equations of three categories exoskeletons were established and inverse position solution method were addressed. Subsequently, three indexes, which can represent the relative movement offsets of human–exoskeleton were defined. Findings Based on the presented position solution and evaluation indexes, the joint displacements and relative movement offsets of the three exoskeletons during eating movement were compared, on which the kinematic characteristics were investigated. The results indicated that the second category of exoskeleton was more suitable for upper limb rehabilitation than the other two categories. Originality/value This paper has a certain reference value for the selection of the 4-DOFs upper extremity rehabilitation exoskeleton mechanism configurations. The selected exoskeleton can ensure the safety and comfort of stroke patients with upper limb dyskinesia during rehabilitation training.


2018 ◽  
Vol 4 (4) ◽  
pp. 256 ◽  
Author(s):  
Calin Vaida ◽  
Nicolae Plitea ◽  
Giuseppe Carbone ◽  
Iosif Birlescu ◽  
Ionut Ulinici ◽  
...  

Author(s):  
Doina Pisla ◽  
Calin Vaida ◽  
Nicolae Plitea ◽  
Adrian Pisla ◽  
Ionut Ulinici ◽  
...  

2019 ◽  
Vol 11 (10) ◽  
pp. 2893 ◽  
Author(s):  
Paul Tucan ◽  
Calin Vaida ◽  
Nicolae Plitea ◽  
Adrian Pisla ◽  
Giuseppe Carbone ◽  
...  

Recently, robotic-assisted stroke rehabilitation became an important research topic due to its capability to provide complex solutions to perform the customized rehabilitation motion with enhanced resources than the traditional rehabilitation. Involving robotic devices in the rehabilitation process would increase the number of possible rehabilitated patients, but placing the patient inside the workspace of the robot causes a series of risks that needs to be identified, analyzed and avoided. The goal of this work is to provide a reliable solution for an upper limb rehabilitation robotic structure designed as a result of a risk assessment process. The proposed approach implies a hazard identification process in terms of severity and probability, a failure mode and effects analysis to identify the possible malfunctions in the system and an AHP (Analytic Hierarchy Process) to prioritize the technical characteristics of the robotic structure. The results of the risk assessment process and of the AHP provide the base of the final design of the robotic structure, while another solution, in terms of minimizing the risk for the patient injury, is obtained using an external measuring system.


2021 ◽  
Vol 11 (12) ◽  
pp. 5635
Author(s):  
Ferdaws Ennaiem ◽  
Abdelbadiâ Chaker ◽  
Med Amine Laribi ◽  
Juan Sandoval ◽  
Sami Bennour ◽  
...  

This paper deals with the optimal design of a planar cable-driven parallel robot (CDPR), with three degrees of freedom, intended for assisting the patient’s affected upper limb along a prescribed movement. A Qualisys motion capture system was used to record the prescribed task performed by a healthy subject. For each pose taken by the center of mass of the end-effector, the cable tensions, the elastic stiffness and the dexterity were optimized while satisfying a set of constraints. First, a multiobjective formulation of the optimization problem was adopted. Since selecting a single solution among the multiple ones given by the Pareto front presents an issue, a mono-objective formulation was chosen, where the objective function was defined as a weighted sum of the chosen criteria. The appropriate values of the weighted coefficients were studied with the aim of identifying their influence on the optimization process and, thus, a judicious choice was made. A prototype of the optimal design of the CDPR was developed and validated experimentally on the prescribed workspace using the position control approach for the motors. The tests showed promising reliability of the proposed design for the task.


2020 ◽  
Vol 2020 (4) ◽  
pp. 25-32
Author(s):  
Viktor Zheltov ◽  
Viktor Chembaev

The article has considered the calculation of the unified glare rating (UGR) based on the luminance spatial-angular distribution (LSAD). The method of local estimations of the Monte Carlo method is proposed as a method for modeling LSAD. On the basis of LSAD, it becomes possible to evaluate the quality of lighting by many criteria, including the generally accepted UGR. UGR allows preliminary assessment of the level of comfort for performing a visual task in a lighting system. A new method of "pixel-by-pixel" calculation of UGR based on LSAD is proposed.


Sign in / Sign up

Export Citation Format

Share Document